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1 Introduction

Political change often takes place in the midst of uncertainty and turmoil, which sometimes

brings to power the most radical factions, such as the militant Jacobins during the Reign of

Terror in the French Revolution or the Nazis during the crisis of the Weimar Republic. The

events leading up to the October Revolution of 1917 in Russia illustrate both how an extremist

fringe group can ascend to power, and the dynamics of repression partly motivated by the desire

of ruling elites to prevent the empowerment of extremist – and sometimes also of moderate –

elements.

Russia entered the 20th century as an absolute monarchy, but started a process of limited

political reforms in response to labor strikes and civilian unrest in the aftermath of its defeat

in the Russo-Japanese war of 1904-1905. Despite the formation of political parties (for the

first time in Russian history) and an election with a wide franchise, the tsar still retained

control, in part relying on repression against the leftist groups, his veto power, the right to

dissolve the parliament (the Duma), full control of the military and cabinet appointments, and

his ability to rule by decree when the Duma was not in session (Pipes, 1995). This may have

been partly motivated by the fear of further strengthening the two major leftist parties, Social

Revolutionaries and Social Democrats (i.e., communists, consisting in turn of the Bolsheviks and

the Mensheviks), which together controlled about 2/5 of the 1906 Duma and explicitly targeted

a revolution.1

World War I created the opening that the Bolsheviks had been looking for, bringing to power

the Provisional Government in the February Revolution of 1917, and then later, the moderate

Social Revolutionary Alexander Kerensky. Additional military defeats of the Russian army in

the summer of 1917, the destruction of the military chain of command by Bolshevik-led soldier

committees, and Kerensky’s willingness to enter into an alliance with Social Democrats to defeat

the attempted coup by the army during the Kornilov affair strengthened the Bolsheviks further.

Though in the elections to the Constituent Assembly in November 1917, they had only a small

fraction of the vote, the Bolsheviks successfully exploited their control of Petrograd Soviets to

1Lenin, the leader of the Bolshevik wing of the Social Democrats, recognized that a revolution was possible
only by exploiting turmoil. In the context of the 1906 Duma, he stated: “Our task is [. . . ] to use the conflicts
within this Duma, or connected with it, for choosing the right moment to attack the enemy, the right moment for
an insurrection against the autocracy.”Later, he argued: “[. . . ] the Duma should be used for the purposes of the
revolution, should be used mainly for promulgating the Party’s political and socialist views and not for legislative
‘reforms,’which, in any case, would mean supporting the counter-revolution and curtailing democracy in every
way.”

1



outmaneuver the more popular Social Revolutionaries, first entering into an alliance with so-

called Left Social Revolutionaries, and then coercing them to leave the government so as to form

their own one-party dictatorship.

This episode illustrates both the possibility of a series of transitions bringing to power some

of the most radical groups and the potential implications of the concerns of moderate political

transitions further empowering radical groups. Despite a growing literature on political transi-

tions, the issues we have just emphasized in the context of the Bolshevik Revolution cannot be

studied with existing models, because they necessitate a dynamic stochastic model where several

groups can form temporary coalitions, potentially leading to a sequence of political transitions

away from current powerholders. Such a model, if tractably developed, could also shed further

light on key questions in the literature on regime transitions, including those concerning political

transitions with several heterogeneous groups, gradual enfranchisement or disenfranchisement,

and the interactions between regime dynamics and coalition formation.2 In this paper, we de-

velop a framework for the study of dynamic political economy in the presence of stochastic shocks

and changing environments, which we then apply to an analysis of the implications of potential

shifts of power to radical groups during tumultuous times and to the problem of institutional

experimentation. The next example provides a first glimpse of the type of abstraction we will

utilize.

Example 1 Consider a society consisting of n groups, spanning from −l < 0 (left-wing) to

r > 0 (right-wing), with group 0 normalized to contain the median voter. For example, with

n = 3, we can think of the rightmost player as corresponding to the Russian tsar, the middle

player to moderate groups, and the leftmost group to Bolsheviks. The stage payoff of each

group depends on current policies, which are determined by the politically powerful coalition

in the current “political state”. Suppose that there are 2n − 1 political states, each specifying

which of the “extreme”players are repressed and excluded from political decision-making. With

n = 3, the five states are s = 2 (both moderates and Bolsheviks are repressed and the tsar is the

dictator), 1 (Bolsheviks are repressed), 0 (nobody is repressed and power lies with moderates),

−1 (the tsar is repressed or eliminated), and finally −2 (the tsar and moderates are repressed,

i.e. a Bolshevik dictatorship). Since current policies depend on the (political) state, we can

2These types of political dynamics are not confined to episodes in which extreme left groups might come to
power. The power struggles between secularists and religious groups in Turkey and more recently in the Middle
East and North Africa are also partly motivated by concerns on both sides that political power will irrevocably
– or at least persistently – shift to the other side.
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directly define stage payoffs as a function of the current state for each player, ui(s) (which is

inclusive of repression costs, if any). Suppose that starting in any state s 6= −2, a stochastic

shock can bring the Bolsheviks to power and this shock is more likely when s is lower.

In addition to proving the existence and characterizing the structure of pure-strategy equi-

libria, this framework enables us to establish the following types of results. First, in the absence

of stochastic shocks bringing Bolsheviks to power, s = 0 (no repression or democracy) is stable

in the sense that moderates would not like to initiate repression, but s > 0 may also be stable,

because the tsar may prefer to incur the costs of repression to implement policies more in line

with his preferences. Second, and more interestingly, moderates may also initiate repression

starting with s = 0 if there is the possibility of a switch of power to Bolsheviks. Third, and

paradoxically, the tsar may be more willing to grant political rights to moderates when Bol-

sheviks are stronger, because this might make a coalition between the latter two groups less

likely (this is an illustration of what we refer to as “slippery slope” considerations and shows

the general non-monotonicities in our model: when Bolsheviks are stronger, the tsar has less

to fear from the slippery slope).3 Finally, there is strategic complementarity in repression: the

anticipation of repression by Bolsheviks encourages repression by moderates and the tsar.4

Though stylized, this example communicates the rich strategic interactions involved in dy-

namic political transitions in the presence of stochastic shocks and changing environments.

Against this background, the framework we develop will show that, under natural assumptions,

we can characterize the equilibria of this class of situations fairly tightly and perform compara-

tive statics, shedding light on these and a variety of other dynamic strategic interactions.

Formally, we consider a generalization of the environment discussed in the example. Society

consists of i = 1, 2, ..., n players (groups or individuals) and s = 1, 2, ...,m states, which represent

both different economic arrangements with varying payoffs for different players, and different

political arrangements and institutional choices. Stochastic shocks are modeled as (stochastic)

changes in environments, which encode information on preferences of all players over states and
3By “slippery slope” considerations we refer to the following type of situation: a “winning coalition” (a

suffi ciently powerful group of players) does not move to a state z starting from s even though all of its members
would obtain strictly greater state utility in z than s. This happens because a move from s is expected to shift
power to another winning coalition which will then start a move to another sequence of states which are less
preferred by some members of the initial winning coalition.

4This result also provides a new perspective on why repression may differ markedly across societies. For
example, Russia before the Bolshevik Revolution repressed the leftists, and thereafter, the rightists and centrists,
while the extent of repression of either extreme has been more limited in the United Kingdom. Such differences
are often ascribed to differences in “political culture”. Our result instead suggests that (small) differences in
economic interests or political costs of repression can lead to significantly different repression outcomes.
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the distribution of political power within states. This approach is general enough to capture

a rich set of permanent and transitory (as well as both anticipated or unanticipated) stochas-

tic shocks depending on the current state and environment. Players care about the expected

discounted sums of their utilities, and based on their political power, they make joint choices

among feasible political transitions. Our key assumption is that both preferences and the dis-

tribution of political power satisfy a natural single crossing (increasing differences) property:

we assume that players and states are “ordered,” and higher-indexed players relatively prefer

higher-indexed states and also tend to have greater political power in such states. (Changes in

environments shift these preferences and distribution of political power, but maintain increasing

differences).5

Our notion of equilibrium isMarkov Voting Equilibrium (MVE), which comprises two natural

requirements: (1) that changes in states should take place if there exists a subset of players

with the power to implement them and who will obtain higher continuation utility (along the

equilibrium path) by doing so; (2) that strategies and continuation utilities should only depend

on payoff-relevant variables and states. Under these assumptions, we establish the existence

of pure-strategy equilibria. Furthermore, we show that the stochastic path of states in any

MVE is monotone between shocks: so long as there is no exogenous shock, the path of states

remains monotone (Theorem 8). Though this result does not imply that the institutional path

is monotone everywhere, it does imply that the direction of society’s institutional path changes

only when shocks arrive. Coupled with our assumption that there is a finite number of shocks,

this result also ensures that a limit state exists, though this limit state (and thus the long-run

equilibrium institution that the society eventually converges to) depends on the exact timing

and realizations of shocks (Theorems 1 and 3). Although MVE are not always unique, we also

provide suffi cient conditions that ensure uniqueness (Theorems 2 and 4). We further demonstrate

a close correspondence between these MVEs and the pure-strategy Markov Perfect Equilibria of

our environment (Theorem 5).

Despite the generality of the framework described here and the potential countervailing

forces highlighted by Example 1, we also establish some comparative static results. Consider,

for example, a change in environment which leaves preferences or the allocation of political

power in any of the states s = 1, . . . , s′ unchanged, but potentially changes them in states

5Formally, we assume “increasing differences” rather than single crossing, but in the informal discussion, we
use the two terms interchangeably.
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s = s′+1, . . . ,m. The result is that if the steady state of equilibrium dynamics described above,

x, did not experience change (i.e., x ≤ s′), then the new steady state emerging after the change

in environment can be no smaller than this steady state (Theorem 6). Intuitively, before the

change, a transition to any of the smaller states s ≤ x could have been chosen, but was not.

Now, given that preferences and political power did not change for these states, they have not

become more attractive.6 An interesting and novel implication of this result is that in some

environments, there may exist critical states, such as a “suffi ciently democratic constitution,”

and if these critical states are reached before the arrival of certain major shocks or changes (which

might have otherwise led to their collapse), there will be no turning back (see Corollary 1). This

result provides a different interpretation of the durability of certain democratic regimes than

the approaches based on “democratic capital”(e.g., Persson and Tabellini, 2009): a democracy

will survive forever if it is not shocked or challenged severely while still progressing towards the

“suffi ciently democratic constitution/state”, but will be reversed if there is a shock before this

state is reached.

The second part of the paper applies our framework to two new and substantive applications.

The first is the emergence and implications of radical politics, in the context of which we establish

the results mentioned at the end of Example 1 above. The second is a model of collective

experimentation over different sets of institutions. Neither application can be studied without

the tools developed in this paper.

Our paper is related to several literatures. First, our previous work, in particular Acemoglu,

Egorov, and Sonin (2012), took one step in this direction by introducing a model for the analy-

sis of the dynamics and stability of different political rules and constitutions. However, that

approach not only heavily relied on the absence of shocks (thus ruling out stochastic changes in

political power or preferences), but also focused on environments in which the discount factor is

suffi ciently close to 1 so that all agents just care about the payoff from a stable state (that will

emerge and persists) if such a state exists. Here, in contrast, it is crucial that political change

and choices are motivated by the entire path of payoffs.7

6 In contrast, some of the higher-ranked states may have become more attractive, which may induce a transition
to a higher state. In fact, somewhat surprisingly, transition to a state s ≥ s′ + 1 can take place even if all states
s = s′ + 1, . . . ,m become less attractive for all agents in society.

7 In Acemoglu, Egorov, and Sonin (2010), we studied political selection and government formation in a popula-
tion with heterogeneous abilities and allowed stochastic changes in the competencies of politicians. Nevertheless,
this was done under two assumptions, which significantly simplified the analysis and made it much less applica-
ble: stochastic shocks were assumed to be very infrequent and the discount factor was taken to be close to 1.
Acemoglu, Egorov and Sonin (2011) took a first step towards introducing stochastic shocks, but only confined to
the exogenous emergence of new extreme states (and without any of the general characterization or comparative
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Second, several papers on dynamic political economy and on dynamics of clubs emerge

as special cases of our paper. Among these, Roberts (1999) deserves special mention as an

important precursor to our analysis. Roberts studies a dynamic model of club formation in which

current members of the club vote on whether to admit new members or exclude some of the

existing ones; members’preferences satisfy single crossing type assumptions (see also Barberà,

Maschler, and Shalev, 2001). Our setup and results generalize, extend, and strengthen Robert’s

in several dimensions. First, Roberts focuses on a stationary model without shocks, whereas

we allow for nonstationary elements and rich stochastic shocks. Second, we allow for fairly

general distributions of political power across states, which is crucial for our focus, while Roberts

assumes majority rule for every club. Third, we prove existence of pure-strategy equilibria and

provide conditions for uniqueness – results that do not have equivalents in Roberts. Fourth, we

provide a general characterization of the structure of MVE, which in turn paves the way for our

comparative static results – again results that have no equivalents and Roberts. Fifth, we show

the relationship between this equilibrium concept and MPE of a fully specified dynamic game.

Finally, we show how our framework can be applied to a political economy problem, providing

new and interesting insights in this instance. Gomes and Jehiel’s (2005) paper, which studies

dynamics in a related environment with side transfers, is also noteworthy, yet does not include

stochastic elements or similar general characterization results either.

Third, our motivation is also related to the literature on political transitions. Acemoglu and

Robinson (2000a, 2001) consider environments in which institutional change is partly motivated

by a desire to reallocate political power in the future to match the current distribution of

power.8 Acemoglu and Robinson’s analysis is simplified by focusing on a society consisting of

two social groups (and in Acemoglu and Robinson, 2006, with three social groups). In Acemoglu

and Robinson (2001), Fearon (2004), Padro i Miquel (2007), Powell (2006), Hirshleifer, Boldrin,

and Levine (2009), and Acemoglu, Ticchi, and Vindigni (2010), anticipation of future changes in

political power leads to ineffi cient policies, civil war, or collapse of democracy. There is a growing

literature that demonstrates ineffi ciencies in environments where current political decisions affect

the future allocation of political power or bargaining power (see Besley and Coate, 1998, Fearon,

1996, Powell, 2006, and Acharya and Ortner, 2013).

static results presented here).
8Other related contributions here include Alesina, Angeloni, and Etro (2005), Barberà and Jackson (2004),

Messner and Polborn (2004), Bourguignon and Verdier (2000), Burkart and Wallner (2000), Jack and Lagunoff
(2008), Lagunoff (2006), and Lizzeri and Persico (2004).
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Fourth, there is a small literature on strategic use of repression, which includes Acemoglu

and Robinson (2000b), Gregory, Schroeder, and Sonin (2011) and Wolitzky (2011). None of the

papers discussed in the previous three paragraphs study the issues we focus on or make progress

towards a general framework of the sort presented here.

Finally, our approach is related to but quite different from the study of games with strate-

gic complementarities (see Milgrom and Roberts, 1990, Vives, 1990, for early contributions,

Echenique, 2004, for the relationship of such games to games with unique equilibria, and Chas-

sang, 2010, for games with strategic complementarities and private information). As in this

literature, we impose a joint order over players and strategies and utilize an increasing differ-

ences assumption. However, crucially, ours is not a game of strategic complementarities, there

are no “monotone”comparative statics (as evidenced by the slippery slope considerations dis-

cussed in footnote 3 and the type of results already mentioned in footnote 6 above), and the

mathematical arguments underlying our results and their logic are very different.

The rest of the paper is organized as follows. In Section 2, we present our general framework

and introduce the concept of MVE. Section 3 contains the analysis of MVE. We start with the

stationary case (without shocks), then extend the analysis to the general case where shocks are

possible, and then compare the concepts of MVE to Markov Perfect Equilibrium in a properly

defined dynamic game. We also establish several comparative static results that hold even at

this level of generality; this allows us to study the society’s reactions to shocks in applied models.

Section 4 applies our framework to the study of radical politics and to the problem of institutional

experimentation. Section 5 concludes. Appendix A contains some important lemmas and proofs

of the main theorems. Appendix B, which is available online, contains additional proofs, several

extensions, and examples.

2 General Framework

Time is discrete and infinite, indexed by t ≥ 1. The society consists of n players (representing

individuals or groups), N = {1, . . . , n}. The set of players is ordered, and the order reflects

the initial distribution of some variable of interest. For example, higher-indexed players may

be richer, or more pro-authoritarian, or more right-wing on social issues. In each period, the

society is in one of the h environments E = {E1, . . . , Eh}, which determine preferences and the

distribution of political power in society (as described below). We model stochastic elements

by assuming that, at each date, the society transitions from environment E to environment E′
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with probability π (E,E′). Naturally,
∑

E′∈E
π (E,E′) = 1. We assume:

Assumption 1 (Ordered Transitions) If 1 ≤ x < y ≤ h, then

π (Ey, Ex) = 0.

Assumption 1 implies that there can only be at most a finite number of shocks. It also

stipulates that environments are numbered so that only transitions to higher-numbered environ-

ments are possible. This numbering convention is without loss of generality and enables us to

use the convention that once the last environment, Eh, has been reached, there will be no further

stochastic shocks.9 In what follows, we will call the pair
(
E = {E1, . . . , Eh},

{
πE,E′

}
E,E′∈E

)
a

stochastic environment. In other words, a stochastic environment is a collection of environments

and transition probabilities such that Assumption 1 is satisfied.

We model preferences and the distribution of political power by means of states, belonging

to a finite set S = {1, . . . ,m}.10 The set of states is ordered : loosely speaking, this will generally

imply that higher-indexed states provide both greater economic payoffs and more political power

to higher-indexed players. An example would be a situation in which higher-indexed states

correspond to less democratic arrangements, which are both economically and politically better

for more “elite”groups. The payoff of player i ∈ N in state s ∈ S and environment E ∈ E is

uE,i (s).

To capture relative preferences and power of players in different states, we will frequently

make use of the following definition:

Definition 1 (Increasing Diff erences) Vector {wi (s)}s∈Bi∈A , where A ⊂ N , B ⊂ S, satisfies

the increasing differences condition if for any agents i, j ∈ A such that i > j and any states

x, y ∈ B such that x > y,

wi (x)− wi (y) ≥ wj (x)− wj (y) .

The following is one of our key assumptions:

Assumption 2 (Increasing Diff erences in Payoff s) In every environment E ∈ E, the

vector of (stage) payoffs, {uE,i (s)}s∈Si∈N , satisfies the increasing differences condition.

9 In particular, Assumption 1 does not preclude the possibility that the same environment will recur several
times. For example, the possibility of q transitions between E1 and E2 can be modeled by setting E3 = E1,
E4 = E2, etc. It also does not mean that the society must reach Eh on every path: for example, it is permissible
to have three environments with π

(
E1, E2

)
= π

(
E1, E3

)
> 0, and all other transition probabilities equal to zero.

10The implicit assumption that the set of states is the same for all environments is without any loss of generality.
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Note that payoffs {uE,i (s)} are directly assigned to combinations of states and environments.

An alternative would be to assign payoffs to some other actions, e.g., “policies”, which are then

selected endogenously by the same political process that determines transitions between states.

This is what we do in Section 4: under fairly weak conditions, the current state will determine the

choice of action (policy), so payoffs will then be indirectly defined over states and environments.

Here we are thus reducing notation by directly writing them as {uE,i (s)}.11

Assumption 2 is the first of our two most substantive assumptions. It essentially imposes

that we can think of political conflict in this society as taking place over a “single-dimensional”

issue over which all agents have well-defined preferences. In particular, if we think of this single-

dimensional issue as representing a left-right divide, then this assumption implies that agents

can also be ordered in terms of their left vs. right stance, and as we go to more right-wing

agents, they obtain increasingly greater additional utility from the implementation of policies

further to the right. Though restrictive, this is exactly the type of assumption that is employed

in the majority of static models of political economy in order to obtain general existence and

characterization results (e.g., Austen-Smith and Banks, 2000). Technically, it is a key input into

the following result: despite the fact that agents care not only about a single policy but about

the entire future sequence of policies, they can still be ranked from left to right, and any move

to a further right state that is preferred by an agent will also be preferred by all agents to his

right.

We model the distribution of political power in a state flexibly using the notion of winning

coalitions. This captures information on which subsets of agents have the (political) power to

implement economic or political change, here corresponding to a transition from one state to

another. We denote the set of winning coalitions in state s and environment E by WE,s, and

impose the following standard assumption:

Assumption 3 (Winning Coalitions) For environment E ∈ E and state s ∈ S, the set of

winning coalitions WE,s satisfies:

1. (monotonicity) if X ⊂ Y ⊂ N and X ∈WE,s, then Y ∈WE,s;

2. (properness) if X ∈WE,s, then N \X /∈WE,s;

11This in principle allows for a setup where the group in power chooses a different policy than its bliss point
because of some (endogenous) constraints, such as the “no revolution constraint” in Acemoglu and Robinson
(2000a, 2006). We do not explicitly discuss this possibility to keep the exposition focused.
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3. (decisiveness) WE,s 6= ∅.

The first part of Assumption 3 states that if some coalition has the capacity to implement

change, then a larger coalition also does. The second part ensures that if some coalition has

the capacity to implement change, then the coalition of the remaining players, its complement,

does not (effectively ruling out “submajority rule”). Finally, the third part, in light of the

monotonicity property, is equivalent to N ∈ WE,s, and thus states that if all players want to

implement a change, they can do so. Several common models of political power are special cases.

For example, if a player is a dictator in some state, then the winning coalitions in that state are

all those that include him; if we need unanimity for transitions, then the only winning coalition

is N ; if there is majoritarian voting in some state, then the set of winning coalitions consists of

all coalitions with an absolute majority of the players.

Assumption 3 puts minimal and natural restrictions on the set of winning coalitions WE,s

in each given state s ∈ S. Our main restriction on the distribution of political power will be, as

discussed in the Introduction, the requirement of some “monotonicity”of political power – that

higher-indexed players have no less political power in higher-indexed states. We first introduce

the notion of a quasi-median voter (see Acemoglu, Egorov, and Sonin, 2012).

Definition 2 (Quasi-Median Voter, QMV) Player ranked i is a quasi-median voter (QMV)

in state s (in environment E) if for any winning coalition X ∈WE,s, minX ≤ i ≤ maxX.

Let ME,s denote the set of QMVs in state s in environment E. Then by Assumption 3,

ME,s 6= ∅ for any s ∈ S and E ∈ E ; moreover, the set ME,s is connected: whenever i < j < k

and i, k ∈ME,s, j ∈ME,s. In many cases, the set of QMVs is a singleton, |ME,s| = 1. Examples

include: one player as a dictator, i.e., X ∈ WE,s if and only if i ∈ X (and then ME,s = {i}),

majoritarian voting among sets containing odd numbers of players, or a weighted majority in

voting with “generic weights” (see the discussion below and also Section 4 on the meaning of

this term). An example where ME,s is not a singleton is the unanimity rule.

The following assumption ensures that the distribution of political power is “monotone”over

states.

Assumption 4 (Monotone Quasi-Median Voter Property) In any environment E ∈ E,

the sequences {minME,s}s∈S and {maxME,s}s∈S are nondecreasing in s.

10



The essence of Assumption 4 is that political power (weakly) shifts towards higher-indexed

players in higher-indexed states. To see this, we can rewrite minME,s = maxX∈WE,s
mini∈X i.

Thus minME,s corresponds to the minimal (“critical”) left-wing agent whose support is needed

to get a winning coalition. Assumption 2 implies that if minME,s supports a change from s to

some s′ > s, then all agents in ME,s will also do so. Similarly, maxME,s = minX∈WE,s
maxi∈X i

is the minimal right-wing agent needed for a winning coalition, and if maxME,s supports a

change from s to some s′ < s, then all others in ME,s will also do so.12 Clearly, if ME,s is a

singleton in every state, this assumption is equivalent toME,s being nondecreasing (whereME,s

is treated as the single element). Therefore, in words, Monotone QMV property says that higher

states are more likely to include right-wing players and less likely to include left-wing players in

a winning coalition – thus shifting political power towards right-wing players in states that are

further to the right.13

Assumption 4 is our second key assumption. To see its role, observe that Assumption 2

alone is not suffi cient to ensure that dynamic preferences satisfy single crossing (or increasing

differences)– that an agent necessarily prefers states further to the right if a more left-wing

agent does so. This is because even though her stage payoff is greater in this state, her political

power may be lower, leading to a significantly lower continuation utility. Assumption 4 rules this

possibility out as it imposes that this right-wing agent may only lose power to agents further

to the right – thus implying that agents further to the left will lose even more political power.

Hence, Assumptions 2 and 4 jointly ensure that if an agent prefers to move to a state to the

right, then all agents to her right will also do so, thus implying that dynamic preferences satisfy

increasing differences.

For some applications, one might want to restrict feasible transitions between states that

the society may implement; for example, it might be realistic to assume that only transitions

to adjacent states are possible. To incorporate these possibilities, we introduce the mapping

F = FE : S → 2S , which maps every x ∈ S into the set of states to which society may

transition. In other words, y ∈ FE (x) means that the society may transition from x to y in

environment E. We do not assume that y ∈ FE (x) implies x ∈ FE (y), so certain transitions

may be irreversible. We impose:

Assumption 5 (Feasible Transitions) For each environment E ∈ E, FE satisfies:
12We thank an anonymous referee for this helpful intuition.
13This assumption holds in a variety of applications, including the ones we present in Section 4 and Roberts’s

(1999) model mentioned in the Introduction.

11



1. For any x ∈ S, x ∈ FE (x);

2. For any states x, y, z ∈ S such that x < y < z or x > y > z: If z ∈ FE (x), then y ∈ FE (x)

and z ∈ FE (y).

The key requirement, encapsulated in the second part, is that if a transition between two

states is feasible, then any transition (in the same direction) between intermediate states is also

feasible. Special cases of this assumption include: (a) any transition is possible: FE (x) = S for

any x and E; (b) one-step transitions: y ∈ FE (x) if and only if |x− y| ≤ 1; (c) one-directional

transitions: y ∈ FE (x) if and only if x ≤ y.14

Finally, we assume that the discount factor, β ∈ [0, 1), is the same for all players and across

all environments. To recap, the full description of each environment E ∈ E is given by a tuple(
N,S, β, {uE,i (s)}s∈Si∈N , {WE,s}s∈S , {FE (s)}s∈S

)
.

Each period t starts with environment Et−1 ∈ E and with state st−1 inherited from the

previous period; Nature determines Et with probability distribution π (Et−1, ·), and then the

players decide on the transition to any feasible st as we describe next.15 We take E0 ∈ E and

s0 ∈ S as given. At the end of period t, each player receives the stage payoff

vti = uEt,i (st) . (1)

Denoting the expectation at time t by Et, the expected discounted utility of player i can be

written as

V t
i = uEt,i (st) + Et

∑∞

k=1
βkuEt+k,i (st+k) .

The timing of events within each period is:

1. The environment Et−1 and state st−1 are inherited from period t− 1.

2. There is a change in environment from Et−1 to Et ∈ E with probability π (Et−1, Et).

3. Society (collectively) decides on state st, subject to st ∈ FEt (st−1).

4. Each player gets stage payoff vti given by (1).

14 In an earlier version, we also allowed for costs of transitions between states, which we now omit to simplify
the exposition.
15Throughout the paper, we use lower indices, e.g., Et, to denote the period, and upper indices, e.g., E1, . . . , Eh,

to denote different environments.
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We omit the exact sequence of moves determining transitions across states (in step 3) as this

is not required for the Markov Voting Equilibrium (MVE) concept. The details of the game

form will be introduced when we study the noncooperative foundations of MVE.16

MVE will be characterized by a collection of transition mappings φ = {φE : S → S}E∈E .

With φ, we associate continuation payoffs V φ
E,i (s) for player i in state s and environment E,

which are recursively given by

V φ
E,i (s) = uE,i (s) + β

∑
E′∈E

π
(
E,E′

)
V φ
E′,i (φE′ (s)) . (2)

As 0 ≤ β < 1, the values V φ
E,i (s) are uniquely defined by (2).

Definition 3 (Markov Voting Equilibrium, MVE) A collection of transition mappings

φ = {φE : S → S}E∈E is a Markov Voting Equilibrium if the following three properties hold:

1. (feasibility) for any environment E ∈ E and for any state x ∈ S, φE (x) ∈ FE (x);

2. (core) for any environment E ∈ E and for any states x, y ∈ S such that y ∈ FE (x),{
i ∈ N : V φ

E,i (y) > V φ
E,i (φE (x))

}
/∈WE,x; (3)

3. (status quo persistence) for any environment E ∈ E and for any state x ∈ S,{
i ∈ N : V φ

E,i (φE (x)) ≥ V φ
E,i (x)

}
∈WE,x.

Property 1 requires that MVE involves only feasible transitions (in the current environment).

Property 2 is satisfied if no (feasible) alternative y 6= φ (x) is supported by a winning coalition in

x over φE (x) prescribed by the transition mapping φE . This is analogous to a “core”property:

no alternative should be preferred to the proposed transition by some “suffi ciently powerful”

coalition of players; otherwise, the proposed transition would be blocked. Of course, in this

comparison, players should focus on continuation utilities, which is what (3) imposes. Property

3 requires that it takes a winning coalition to move from any state to some alternative – i.e.,

to move away from the status quo. This requirement singles out the status quo if there is no

alternative strictly preferred by some winning coalition.

16 In what follows, we use MVE both for the singular (Markov Voting Equilibrium) and plural (Markov Voting
Equilibria).
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Definition 4 (Monotone Transition Mappings)A transition mapping φ : S → S is called

monotone if for all x, y ∈ S such that x ≥ y, we have φ (x) ≥ φ (y). A set of transition mappings

{φE : S → S}E∈E is monotone if each mapping φE is monotone.

We prove that there always exists a monotone MVE (an MVE with a monotone transition

mapping), and we can provide suffi cient conditions under which all MVE are monotone. In

particular, whenever the MVE is unique (Theorem 2), it is monotone.

In what follows, we refer to any state x such that φE(x) = x as a steady state or stable in

E. With some abuse of notation, we will often suppress the reference to the environment and

use, e.g., ui (s) instead of uE,i (s) or φ instead of φE , when this causes no confusion.

Throughout the paper, we say that a property holds generically, if it holds for all parameter

values, except possibly for a subset of Lebesgue measure zero (see Halmos, 1974, and Example

3).17 Loosely speaking, a property holds generically if, whenever it does not hold, “almost all”

perturbations of the relevant parameters restore it.

3 Analysis

In this section, we analyze the structure of MVE. We first prove existence of monotone MVE

in a stationary (deterministic) environment. We then extend these results to situations in

which there are stochastic shocks. After establishing the relationship between MVE and Markov

Perfect Equilibria (MPE) of a dynamic game representing the framework of Section 2, we present

comparative static results for our general model.

3.1 Nonstochastic environment

We first study the case without any stochastic shocks, or, equivalently, the case of only one

environment (|E| = 1) and thus suppress the subscript E.

For any mapping φ : S → S, the continuation utility of player i after a transition to s has

17The key feature that genericity ensures for us is the following: For any agent i and any set of mappings
{φE : S → S}E∈E , we have that generically the continuation values that solve (2) satisfy V

φ
E,i (x) 6= V φE,i (y) for

any E ∈ E and any x, y ∈ S with x 6= y. In other words, V φE,i (x) = V φE,i (y) can only be true for a non-generic
set of parameter values. That this property holds generically is established in the proof of Theorem 2. Here it
suffi ces to note that for any discount factor β > 0 and any transition probabilities {π (E,E′)}E,E′∈E , V

φ
E,i (x) and

V φE,i (y) are given by different linears combination of the payoffs {uE,i (s)}
E∈E
s∈S . Thus V

φ
E,i (x) = V φE,i (y) can only

hold for a set of parameters given by the union of a finite number of hyperplanes, which has Lebesgue measure
zero in the set of feasible payoffs {uE,i (s)}E∈Es∈S . This then immediately implies that the set of all parameters, (β,
{π (E,E′)}E,E′∈E , {uE,i (s)}

E∈E
s∈S ) for which V

φ
E,i (x) = V φE,i (y) is also of Lebesgue measure zero.
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taken place is given by

V φ
i (s) = ui (s) +

∑∞

k=1
βkui

(
φk (s)

)
, (4)

where φk is the kth iteration of φ (with φ0 (s) = s).

The critical role of Assumption 2 in our analysis can be seen from a simple but important

observation (see Lemma 2 in Appendix A): when Assumption 2 holds and φ is monotone,

continuation utilities
{
V φ
i (s)

}s∈S
i∈N

satisfy increasing differences. This result is at the root of

the central role of QMVs in our model. As is well known, median voter type results do not

generally apply with multidimensional policy choices. Since our players are effectively voting

over infinite dimensional choices, i.e., a sequence of policies, a natural conjecture would have

been that such results would not apply in our setting either. The reason they do has a similar

intuition to why voting sequentially over two dimensions of policy, over each of which preferences

satisfy single crossing or increasing differences, does lead to the median voter-type outcomes.

By backward induction, the second vote has a well-defined median voter, and then given this

choice, the median voter over the first one can be determined. Loosely speaking, our recursive

formulation of today’s value enables us to apply this reasoning between the vote today and the

vote tomorrow, and the fact that continuation utilities satisfy increasing differences is the critical

step in this argument.

The role of Assumption 4, in turn, is related to the monotonicity of φ. That political power

shifts to the right in states that are further to the right ensures that φ is monotone. This

together with the observation on continuation utility satisfying increasing differences under the

monotonicity of φ enables us to establish the following theorem.18

Theorem 1 (Existence) There exists a monotone MVE. Moreover, in any MVE φ the equi-

librium path s0, s1 = φ (s1) , s2 = φ (s2) , . . . is monotone, and there exists a limit state

sτ = sτ+1 = · · · = s∞.

The next theorem provides suffi cient conditions for generic uniqueness of monotone MVE.

We say that preferences are single-peaked if for every i ∈ N there exists x ∈ S such that whenever

for states y, z ∈ S, z < y ≤ x or z > y ≥ x, ui (z) < ui (y).

Theorem 2 (Uniqueness) The MVE is (generically) unique if

18The actual technical argument is more involved and makes use of several key lemmas, stated and proved in
Appendix A, where the proof of all our main theorems are presented.
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1. for every s ∈ S, Ms is a singleton; or

2. only one-step transitions are possible and preferences are single-peaked.

Though somewhat restrictive, several interesting applied problems satisfy one or the other

parts of the conditions of this theorem. Since Theorem 1 established existence of a monotone

MVE, under the conditions of Theorem 2, the unique MVE is monotone.

Neither the conditions nor the genericity provision in Theorem 2 can be dispensed with as

shown by the next two examples.

Example 2 (Example with two MVE) Suppose that there are three states A,B,C, and two

players 1 and 2. The decision-making rule is unanimity in all states. Payoffs are given by

id A B C
1 20 5 10
2 10 5 20

Then, with β suffi ciently close to 1 (e.g., β = 0.9), there are two MVE, both of which are

monotone. In one, φ1 (A) = φ2 (B) = A and φ1 (C) = C. In another, φ2 (A) = A, φ2 (B) =

φ2 (C) = C.

In view of Theorem 2, multiple equilibria arise here because preferences are not single-peaked,

and there is more than one QMV in all states. Example B1 in Appendix B shows that making

preferences single-peaked is by itself insuffi cient to restore uniqueness.

Example 3 (Multiple MVE for non-generic utilities) There are two states A and B and two

players 1 and 2. Player 1 is the dictator in both states. Payoffs are given by

id A B
1 20 20
2 15 25

For any discount factor β, there exist three equilibria: two monotone MVE (given by φ1 (A) =

φ1 (B) = A and φ2 (A) = φ2 (B) = B) and a non-monotone (in fact, cyclic) MVE φ3 given by

φ3 (A) = B and φ3 (B) = A. However, any perturbation of the payoffs of player 1 removes the

non-monotone equilibrium and one of the monotone ones, restoring uniqueness.

3.2 Stochastic environments

We now extend our analysis to stochastic environments, that is, to the case where there are

stochastic shocks closing changes in environments.19 This will enable us to deal with “non-
19Formally, a stochastic environment is a collection of environments and transition probabilities,
E = ({E1, . . . , Eh}, {πE,E′}E,E′∈E) such that Assumption 1 is satisfied for each environment E

k, k = 1, . . . , h.
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stationarities” in the economic environment, for example, because the distribution of political

power or economic preferences will change in a specific direction in the future. By Assumption

1, environments are ordered as E1, E2, . . . , Eh so that π (Ex, Ey) = 0 if x > y. This means that

when (and if) we reach environment Eh, there will be no further shocks, and the analysis from

Section 3.1 will apply thereafter.

Our approach uses backward induction from environment Eh to characterize equilibrium

transition mappings in lower-indexed environments. Here we outline this argument heuristically.

Take an MVE φEh in environment E
h (its existence is guaranteed by Theorem 1). Suppose that

we have characterized an MVE {φE}E∈{Ek+1,...,Eh} for some k = 1, . . . , h − 1; let us construct

φEk which would make {φE}E∈{Ek,...,Eh} an MVE in
{
Ek, . . . , Eh

}
. Continuation utilities in

environment Ek are:

V φ
Ek,i

(s) = uEk,i (s) + β
∑

E′∈{Ek,...,Eh}
π
(
Ek, E′

)
V φ
E′,i (φE′ (s))

= uEk,i (s) + β
∑

E′∈{Ek+1,...,Eh}
π
(
Ek, E′

)
V φ
E′,i (φE′ (s)) (5)

+ βπ
(
Ek, Ek

)
V φ
Ek,i

(φEk (s)) .

By induction, we know φE′ and V
φ
E′ (φE′ (s)) for E

′ ∈
{
Ek+1, . . . , Eh

}
. We next show that there

exists φEk that is an MVE given continuation values
{
V φ
Ek,i

(s)
}
s∈S

from (5). Denote

ŨEk,i (s) = uEk,i (s) + β
∑

E′∈{Ek+1,...,Eh}
π
(
Ek, E′

)
V φ
E′,j (φE′ (s)) , (6)

and let β̃ = βπ
(
Ek, Ek

)
.20 Then rearranging equation (5), where

V φ
Ek,i

(s) = ŨEk,i (s) + β̃V φ
Ek,i

(φEk (s)) .

Since
{
ŨEk,i (s)

}s∈S
i∈N

satisfy increasing differences, we can simply apply Theorem 1 to the

modified environment Ẽ =

(
N,S, β̃,

{
ŨEk,i (s)

}s∈S
i∈N

,
{
WEk,s

}
s∈S , {FEk (s)}s∈S

)
to character-

ize φEk . Then by definition of MVE, since {φE}E∈{Ek+1,...,Eh} was an MVE, we have that

We use the term stationary environment when we wish to stress the distinction from a stochastic environment.
20 Intuitively, ŨEk,i (s) is the expected utility of agent i from staying in state s as long as the environment

remains the same, and following the MVE play thereafter (i.e., after a change in environment). The continuation
utility from such path is therefore

Ṽi (s) = uEk,i (s) + β
∑

E′∈{Ek+1,...,Eh}
π(Ek, E′)V φE′,i(φE′ (s)) + βπ(Ek, Ek)Ṽi (s) ,

and thus ŨEk,i (s) = (1− β̃)Ṽi (s).
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{φE}E∈{Ek,...,Eh} is an MVE in Ek, proving the desired result. Proceeding inductively, we

characterize an entire MVE φ = {φE}E∈{E1,...,Eh} in E
1 = E . This argument establishes:21

Theorem 3 (Existence) There exists an MVE φ = {φE}E∈E . Furthermore, there exists a

limit state sτ = sτ+1 = · · · = s∞ (with probability 1) but this limit state depends on the timing

and realization of stochastic shocks and the path to a limit state need not be monotone everywhere.

This theorem establishes that a limit state exists, and more importantly, this limit state (and

the resulting equilibrium path) generally depends on the exact timing and sequence of shocks.

The path to the limit state need not be monotone everywhere, but we show below (Theorem 8)

that it is monotone between shocks, i.e., it is monotone in any time interval in which there are

no shocks. The following theorem provides suffi cient conditions for uniqueness in the stochastic

case.22

Theorem 4 (Uniqueness) The MVE is (generically) unique if at least one of the following

conditions holds:

1. for every environment E ∈ E and any state s ∈ S, ME,s is a singleton;

2. in each environment, only one-step transitions are possible; each player’s preferences are

single-peaked; and moreover, for each state s there is a player i such that i ∈ME,s for all

E ∈ E and the peaks (for all E ∈ E) of i’s preferences do not lie on different sides of s.

The first suffi cient condition is the same as in Theorem 2, while the second strengthens the

one in Theorem 2: it would be satisfied, for example, if players’bliss points (most preferred

state) and the distribution of political power does not change “much” as a result of shocks.

Uniqueness of MVE again implies that this MVE is monotone.

3.3 Noncooperative game

We have so far presented the concept of MVE without introducing an explicit noncooperative

game. This is partly motivated by the fact that several plausible noncooperative games would

underpin the notional MVE. We now provide one plausible and transparent noncooperative

21The proof is again in Appendix A. In addition, Example B2 in Appendix B shows that the limits state does
depend on the realization of shocks.
22The diffi culty here is that as shown, for instance, by Example B3 in Appendix B, single-peakedness is not

necessarily inherited by continuation utilities.
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game and formally establish the relationship between the Markov Perfect Equilibria (MPE) of

this game and the set of MVE.

For each environment E ∈ E and state s ∈ S, let us introduce a protocol θE,s, which is a

finite sequence of all states in Fs \ {s} capturing the order in which different transitions are

considered within the period. Then the exact sequence of events in this noncooperative game is:

1. The environment Et−1 and state st−1 are inherited from period t− 1.

2. Environment transitions are realized: Et = E ∈ E with probability π (Et−1, E).

3. The first alternative, θEt,st−1 (j) for j = 1, is voted against the status quo s. That is,

all players are ordered in a sequence and must support either the “current proposal”

θEt,st−1 (j) or the status quo s.23 If the set of those who supported θEt,st−1 (j) is a winning

coalition – i.e., it is in WEt,st−1– then st = θEt,st−1 (j); otherwise, this step repeats for

the next j. If all alternatives have been voted and rejected for j = 1, . . . , |Fs|− 1, then the

new state is st = st−1.

4. Each player gets stage payoff given by (1).

We study (pure-strategy) MPE of this game. Each MPE induces (an equilibrium behavior

which can be represented by) a set of transition mappings φ = {φE}E∈E . Here φE (s) is the

state to which the equilibrium play transitions starting with state s in environment E.

Theorem 5 (MVE vs. MPE)

1. For any MVE φ, there exists a set of protocols {θE,s}s∈SE∈E such that there exists a MPE

which induces φ.

2. Conversely, if for some set of protocols {θE,s}s∈SE∈E and some MPE σ, the corresponding

transition mapping φ = {φE}E∈E is monotone, then it is an MVE.

This theorem thus establishes the close connection between MVE and MPE. Essentially, any

MVE corresponds to an MPE (for some protocol), and conversely, any MPE corresponds to an

MVE, provided that this MPE induces monotone transitions.

23To avoid the usual multiplicity problems with equilibria in voting games, we assume sequential voting for
some fixed sequence of players. See Acemoglu, Egorov, and Sonin (2009) for a solution concept which would refine
out unnatural equilibria in voting games with simultaneous voting.
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3.4 Comparative statics

In this subsection, we present a general comparative static result. Throughout, we assume

that parameter values are generic and all MVEs are unique (e.g., the suffi cient conditions for

uniqueness in Theorem 4 are satisfied).

We say that environments E1 and Ẽ1coincide on S′ ⊂ S, if for each i ∈ N and for any state

x ∈ S′, we have uE1,i (x) = uẼ1,i (x), WE1,x = WẼ1,x, FE1 |S′ = FẼ1 |S′ (in the sense that for

x, y ∈ S′, y ∈ FE1 (x) ⇔ y ∈ FẼ1 (x)). The next result shows that there is a simple way of

characterizing the equilibrium transition mapping of one environment at the steady state of the

other. For this result, we will assume that MVE is unique (e.g., the assumptions of Theorem 4

are satisfied for all subsets S′ ⊂ S).24

Theorem 6 (General Comparative Statics) Suppose that environments E1 and Ẽ1 coincide

on S′ = [1, s] ⊂ S and that there is a unique MVE in both environments. For MVE φE1 in E
1,

suppose that φE1 (x) = x for some x ∈ S′. Then for MVE φ̃Ẽ1 in Ẽ1 we have φ̃E1 (x) ≥ x.

The theorem says that if x is a steady state in environment E1 and environments E1 and Ẽ1

coincide on a subset of states [1, s] that includes x, then the MVE in Ẽ1 will either stay at x or

induce a transition to a greater state than x. Of course, the two environments can be swapped:

if y ∈ S′ is such that φ̃Ẽ1 (y) = y, then φE1 (y) ≥ y. Moreover, since the ordering of states can

be reversed, a similar result applies when S′ = [s,m] rather than [1, s].

The intuition for Theorem 6 is instructive. The fact that φE1 (x) = x implies that in environ-

ment E1, there is no winning coalition wishing to move from x to y < x. But when restricted to

S′, economic payoffs and the distribution of political power are the same in environment Ẽ1 as in

E1, so in environment Ẽ1 there will also be no winning coalition supporting the move to y < x.

This implies φ̃Ẽ1 (x) ≥ x. Note, however, that φ̃Ẽ1 (x) > x is possible even though φE1 (x) = x,

since the differences in economic payoffs or distribution of political power in states outside S′

may make a move to higher states more attractive for some winning coalition in Ẽ1. Inter-

estingly, since the difference between two environments outside S′ is left totally unrestricted,

24The theorem immediately extends to the case where we consider two stochastic environments E ={
E1, . . . , Eh

}
and Ẽ =

{
Ẽ1, E2, . . . , Eh

}
(i.e., with only the initial environments being different), and assume

that πE
(
E1, Ek

)
= πẼ

(
Ẽ1, Ek

)
for any k > 1 and πE (E,E′) = πẼ (E,E′) for any E,E′ ∈

{
E2, . . . , Eh

}
.

A similar result can also be established without uniqueness. For example, one can show that if for some x ∈ S′,
for each MVE φE1 in E

1, φE1 (x) ≥ x, with at least one MVE φ such that φE1 (x) = x, then all MVE φ̃Ẽ1 in E
1

satisfy φ̃Ẽ1 (x) ≥ x. Because both the statements of these results and the proofs are more involved, we focus here
on situations in which MVE are unique.
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this last possibility can happen even if in environment Ẽ1 payoffs outside S′ are lower for all

players (this could be, for example, because even though all players’payoffs decline outside S′,

this change also removes some “slippery slope”previously discouraging a winning coalition from

moving to some state z > x).

Theorem 6 compares MVE in two distinct environments E1 and Ẽ1 (or two distinct stochastic

environments, E and Ẽ , as noted in footnote 24). In this sense, we can think of it as a comparative

static with respect to an unanticipated shock (taking us from one environment to the other). The

next corollary states a similar result when there is a stochastic transition from one environment

to another.

Corollary 1 Suppose that E =
{
E1, E2

}
, E1 and E2 coincide on S′ = [1, s] ⊂ S, and the MVE

is unique in both environments. Suppose also that for MVE φ = (φE1 , φE2) in E and some

x ∈ S′, φE1 (x) = x, and this state x is reached before a switch from environment E1 to E2

occurs at time t. Then φE2 is such that that along the equilibrium path in environment E2, we

have sτ ≥ x for all τ ≥ t.

This corollary states that if steady state x is reached before a shock changes the environment

– in a way that only higher states are affected as a result of this change in environment – then

the equilibrium after the change can only move society further towards the direction where the

shock happened (or stay where it was); in particular, the equilibrium will never involve moving

back to a lower state than x. A straightforward implication is that the only way society can

stay in the set of states [1, x− 1] is not to leave the set before the shock arrives.

An interesting application of this corollary is when we consider x as a “minimal suffi ciently

democratic state”; states to the right of x as further refinements of democracy; and environment

E2 as representing (the strengthening of) a threat to democracy. Then the corollary implies that

this threat to democracy may disrupt the emergence of this minimal democracy if it arrives early.

But if it arrives late, after this minimal democratic state – which thus can be considered as a

“democratic threshold”– has already been reached, it would not create a reversal. Interestingly,

and perhaps paradoxically, Corollary 1 implies that such a threat, if it arrives late, may act as

an impetus for additional transitions in a further democratic direction, even though it would

have prevented the emergence of this minimum democratic state had it arrived early.

Example B4 in Appendix B below demonstrates that the requirement that E1 and E2 coin-

cide for some states cannot be dispensed with, in part because when this assumption is relaxed,
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slippery slope considerations can lead to counter-intuitive dynamics.

Futher comparative statics results are also provided in Appendix B. First, we show in The-

orem B1 that when the discount factor is suffi ciently low and two environments coincide on a

subset of states, the equilibrium path is monotone everywhere (i.e., it does not change direction

even as shocks arrive), and as a result, equilibrium paths with and without shocks can be ranked.

In Theorem B2, we show that if the sets of winning coalitions in some states to the right

(x > s) change such that the sets of QMVs expand further towards the right (for example,

because some players on the right become additional veto players), then the transition mapping

is unaffected for states on the left that are not directly affected by the change (i.e., x < s).

Applied to the dynamics of democratization, this theorem implies that an absolute monarch’s

decision of whether to move to a constitutional monarchy is not affected by the power that the

poor will be able to secure in this new regime provided that the monarch himself still remains

a veto player.

3.5 Monotone vs non-monotone MVE

We have so far focused on monotone MVE. In many interesting cases this is without loss of

generatlity, as the following theorem establishes.

Theorem 7 (Monotonicity of MVE) All MVE are generically monotone if

1. in all environments, the sets of QMVs in two different states have either zero or exactly

one player in common: for all E ∈ E , x, y ∈ S : x 6= y ⇒ |ME,x ∩ME,y| ≤ 1, or

2. in all environments, only one-step transitions are possible.

The first part of the theorem weakens the first condition in Theorems 2 and 4 that the set

of QMVs in each state is a singleton, while the second part only requires that there are one-step

transitions (relative to the stronger conditions in these previous theorems). As a result, the

conditions in Theorem 7 are strictly weaker than those in Theorem 2 and 4.

Example B5 in Appendix B shows that both conditions in Theorem 7 cannot be simultane-

ously dispensed with.

Our last result in this section shows that even if non-monotone MVE exist, they will still

induce paths that are monotone except for possible changes in direction due to shocks. In

particular, we say that mapping φ = {φE}E∈E induces paths that are monotone between shocks

22



if for any E ∈ E and x ∈ S, φE (x) ≥ x implies φ2
E (x) ≥ φE (x); in other words, the MVE

generates paths that are monotone so long the environment does not change due to an exogenous

shock. The next theorem shows that all equilibrium paths are monotone between shocks.

Theorem 8 (Monotone Paths) Any MVE φ (not necessarily monotone) generically induces

paths that are monotone between shocks.

3.6 Infinitely many environments

Our analysis so far has been conducted under the assumption of a finite number of environments,

which greatly simplified the analysis and enabled sharp results. Here, we show that a monotone

MVE exists even with infinitely many environments (shocks). In particular, we assume that

we have countably many environments E =
{
E1, E2, . . .

}
with transition probabilities π (E,E′)

and such that Assumption 1 holds (and the Assumptions 2-5 for each Ei). The proof of this

theorem, like those of all remaining results in the paper, is provided in Appendix B.

Theorem 9 (Existence with Infinitely Many Environments) Suppose that utilities are

bounded in all environments (i.e., there exists M > 0 such that for every E ∈ E, s ∈ S and

i ∈ N , |uE,i (s)| < M). Then there exists a monotone MVE.

4 Applications

In this section, we discuss two applications of our general framework. The first one, on radical

politics, is the most detailed. We then discuss a model of experimentation over institutions.

4.1 Radical politics

In this subsection, we apply our general framework to the study of radical politics, already

briefly introduced in Example 1 in the Introduction. We first describe the initial environment,

E1. There is a fixed set of n players N = {−l, . . . , r} (so n = l + r + 1), which we interpret as

groups of individuals with the same preferences (e.g., ethnicities, economic interests or ideological

groupings) that have already solved their within-group collective action problem.

The weight of each group i ∈ N is denoted by γi and represents, for example, the number of

individuals within the group and thus the group’s political power. Throughout this subsection,

we assume “genericity” of {γi}, in the sense that there are no two disjoint combinations of

groups with exactly the same weight.25 Group 0 is chosen such that it contains the median
25See Acemoglu, Egorov and Sonin (2008) for an extended discussion of this assumption.
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voter. Individuals in group i have preferences (net of repression costs) given by

wi (p) = − (p− bi)2 ,

where p is the policy choice of society and bi is the political bliss point of group i. We assume that

{bi} is increasing in i, which ensures that preferences satisfy increasing differences (Assumption

2). For example, those with high index can be interpreted as the “rich”or “right-wing”groups

that prefer the pro-rich (pro-right-wing) policy.

As in Example 1, the set of states is S = {−l − r, . . . , l + r}, and so the total number of

states is m = 2l + 2r + 1 = 2n − 1. States correspond to different combinations of political

rights. Political rights of certain groups can be reduced by repression (which is potentially

costly as described below). The set of groups that are not repressed in state s is denoted

by Hs, where Hs = {−l, . . . , r + s} for s ≤ 0 and Hs = {−l + s, . . . , r} for s > 0.26 Only

the groups that are not repressed participate in politics. This implies that in state 0, which

corresponds to “democracy” (with no repression of any group), group 0 contains the median

voter. In states below 0, some groups with right-wing preferences are repressed, and in the

leftmost state s = −l − r, only the group −l participates in decision-making (hence, all other

groups are repressed). Similarly, in states above 0 some of the left-wing groups are repressed (in

rightmost state s = l+ r only group r has power). This structure ensures that Assumption 4 is

satisfied, and we also assume that all transitions across states are feasible, so that Assumption

5 also holds.

Policy p and transitions across states are decided by a simple majority of those individuals

who have political rights (i.e., belong to groups that are not repressed). This implies that policy

will always be chosen as the political bliss point of the QMV (given political rights), bMs . Our

assumptions so far (in particular, the genericity of {γi}) ensure thatMs contains a single group.

The cost of repressing agents in group j is denoted by Cj and is assumed to be incurred by all

players. So, stage payoffs are given by

ui (s) = wi (p)−
∑

j /∈Hs
γjCj ,

= − (bMs − bi)
2 −

∑
j /∈Hs

γjCj .

In what follows, we refer to the leftmost group −l as radicals. We assume that the radical
26We could allow for the repression of any combination of groups, thus having to consider 2n − 1 rather than

2n−1 states, but choose not to do so to save on notation. Partial repression of some groups could also be allowed,
with similar results.
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group −l is smaller than the next group: γ−l < γ−l+1, which implies that radicals can implement

their preferred policy only if they repress all of the groups in society.27

We model power shifts by introducing h “radical”environments, R−l−r, . . . , R−l−r+h−1, each

with probability λj for j = 1, . . . ,m at each date starting from E1. Environment Rj is the same

as E1, except that in environment Rj , if the current state is one of −l − r, . . . , j, the radical

group, −l, acquires the ability to force a transition to any other state (in the process incurring

the costs of repression). In particular, the radicals can choose to “grab power”by repressing all

other groups and transitioning to state s = −l − r.28 Therefore, in state s, the probability of

the radicals having an opportunity to grab power is µs =
∑l+r

j=s λj , which is naturally (weakly)

decreasing in s.

We also assume that in each period in any of the environments Rj , there is a probability

ν of returning to the initial environment, E1. This is equivalent to a transition to the “final”

environment Ef identical to E1 in terms of payoffs and winning coalitions (but there will be

no further possibility of radicals coming to power after that). Clearly, ν = 0 corresponds to a

permanent shock, and as ν increases, the expected length of the period during which radicals

can dictate transitions declines. Note, however, that if radicals grab power permanently the first

time they get the opportunity and impose a transition to state s = −l − r (in which they are

the dictator), then they will remain in power even after there is a transition to environment Ef .

The next proposition uses Theorems 1 and 2 to establish the existence of a unique MVE,

and then characterizes it in a baseline environment where there is no possibility of a radical

takeover of power. The environment without radicals can be represented by Ef (since from Ef

there is no further transition and thus no possibility of a radical takeover of power), and we use

this convention to avoid introducing further notation.

Proposition 1 (Equilibria without radicals) Without the possibility of radicals grabbing

power (i.e., in environment Ef ), there exists a unique MVE represented by φEf : S → S. In

this equilibrium:

1. Democracy is stable: φEf (0) = 0.

27Though in this subsection we focus on left-wing radicals, our theory can be directly applied to the study of
right-wing radicals and can also be readily extended to study environments in which both types of radical are
present.
28 In the context of the Bolshevik Revolution, this corresponds to assuming that in some possible environments

(i.e., with some probability), Bolsheviks would be able to grab control with Kerensky in power but not necessarily
with some government further to the right.
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2. For any costs of repression {Cj}j∈N , there is never more repression than in the initial

state: i.e., if s < 0 then φEf (s) ∈ [s, 0], and if s > 0, then φEf (s) ∈ [0, s].

3. Consider repression costs parametrized by k: Cj = kC∗j , where
{
C∗j

}
are positive con-

stants. There exists k∗ > 0 such that: if k > k∗, then φEf (s) = 0 for all s, and if k < k∗,

then φEf (s) 6= 0 for some s.

Without radicals, democracy is stable because the median voter knows that she will be the

one setting policy in the future (and can do so without incurring any cost of repression). This

does not mean, however, that there is no repression starting in any state. Rather, other states

may also be stable, meaning that agents can pay the cost of repression and stay away from s = 0.

For instance, starting from a situation in which there is repression of the left, the QMV in that

state may not find it beneficial to reduce repression because this will typically lead to policies

further to the left (relative to the political bliss point of the QMV). But this type of repression is

also limited by the cost of repression. If these costs are suffi ciently high, then repression becomes

unattractive starting from any state, and democracy becomes the only stable state.

The next proposition shows how political dynamics change when there is a risk of a radical

takeover of power. This and the following proposition both utilize Theorems 3 and 4 to establish

the existence of a unique MVE in the presence of shocks (that potentially shift power to radicals),

and then use the same backward induction approach outlined in Section 3.2 (for establishing

Theorem 3) to characterize behavior before the arrival of shocks as a function of the continuation

play after the arrival of shocks.

Proposition 2 (Radicals) There exists a unique MVE. Suppose that when the society is at

state s, there is a transition to environment Rz (where z ≥ s) so that radicals can grab power.

Then, when they have the opportunity, the radicals move to state s = −l−r (repressing all other

groups) under a wider set of parameters when: (a) they are more radical (meaning their ideal

point b−l is lower, i.e., further away from 0); (b) they are “weaker” (i.e., z is smaller) in the

sense that there is a smaller set of states in which they are able to control power.

This proposition is intuitive. When they have more radical preferences, radicals value more

the prospect of imposing their political bliss point, and are thus willing to incur the costs of

repressing all other groups to do so. Radicals are also “more likely”to repress all other groups

when they are “weaker”because when z is lower, there is a greater range of states where they

cannot control future transitions, encouraging an immediate transition to s = −l − r.
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To state our next proposition, we return to the (counterfactual) expected continuation utility

of a group from permanently staying in a state s ∈ S until a shock changes the environment,

and following the MVE play thereafter. This continuation utility was was defined in Section 3.2

(in particular, footnote 20), and it is given (up to a scalar factor 1− β (1− µ1)) by:29

Ũi (s) = ui (s) + β
−l−r+h−1∑
z=−l−r

λzVRz ,i (s) .

Proposition 3 (Repression by moderates anticipating radicals) The transition mapping

before radicals come to power, φE1, satisfies the following properties.

1. If s ≤ 0, then φE1 (s) ≥ s.

2. If Ũ0 (0) < Ũ0 (s) for some s > 0, then there is a state x ≥ 0 such that φE1 (x) > x. In

other words, there exists some state in which there is an increase in the repression of the

left in order to decrease the probability of a radical takeover of power.

3. If for all states y > x ≥ 0, ŨMx (y) < ŨMx (x), then for all s ≥ 0, φE1 (s) ≤ s. In other

words, repression of the left never increases when the cost of repression increase (e.g.,

letting Cj = kC∗j , repression weakly declines when k increases).

The first part of the proposition indicates that there is no reason for repression of the right

to increase starting from states below s = 0; rather, in these states the tendency is to reduce

repression. However, the second part shows that if the median voter (in democracy) prefers a

more repressive state when she could counterfactually ensure no further repression unless radicals

come to power (which she cannot do because she is not in control in that state), then there is

at least one state x from which there will be an increase in repression against the left (which

does not necessarily have to be s = 0).30 An implication of this result is that, off the threat of

radical disappears, there will be a decline in repression starting in state x > 0. The third part

of the proposition provides a suffi cient condition for the opposite result.

The next proposition is a direct consequence of our general comparative static results given

in Theorem 6, and shows how these results can be applied to reach substantive conclusions in

specific settings.

29Observe also that
{
Ũi (s)

}
are defined only in terms of strategies played in environments Rz and Ef , and

do not depend on strategies played in E1. Hence, they can be computed directly as functions of the underlying
parameters.
30Notably, even if there are “slippery slope” considerations (as defined in footnote 3) making some types of

repressions undesirable, these will not be suffi cient to prevent all repression
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Proposition 4 (Comparative statics of repression) Suppose that there is a state s ≥

0 (i.e., democracy or some state favoring the right), which is stable in E1 for some set of

probabilities
{
µj
}
. Consider a change from

{
µj
}
to
{
µ′j

}
such that µ′j = µj for j ≥ s. Then

there will be (weakly) less repression of the left after the change, i.e., φ′E1 (s) ≤ φE1 (s) = s.

The intuition is the same as Theorem 6: if the probabilities of a radical takeover of power

change, but only in states that already had repression against the left, and we are in a stable

state without repression against the right, then this can only reduce repression. If there is now a

lower likelihood of a radical grab of power, then this leads to less repression. But, paradoxically,

even if there is a higher likelihood of such a grab, there may be less repression as the “slippery

slope”considerations become less powerful.

Our final result deals with strategic complementarity in repressions. To state this result,

consider a change in the costs of repression so that it becomes cheaper for radicals to repress

right-wing groups. In particular, the stage payoff function of radicals changes to

u−l (s) = − (bMs − b−l)
2 − ρ

∑
j /∈Hs

γjCj

for s < 0 and ρ ∈ [0, 1]. Clearly, ρ = 1 corresponds to our baseline environment, and a decrease

in ρ implies that radicals can repress right-wing groups with less cost to themselves. Then:

Proposition 5 (Strategic Complementarity) Suppose that λz = 0 for all z > 0 (meaning

that radicals can only seize power if they are not currently repressed). Consider a change in

the radicals’ repression costs to ρ′ < ρ and denote the MVE before and after the change by,

respectively, φ and φ′. Then if φE1 (s) > s for some s ≥ 0, then φ′E1 (s) > s.

Put differently, the proposition implies that if φE1 (0) > 0, then φ′E1 (0) > 0, so that re-

pression of the radicals is more likely when they themselves have lower costs of repressing other

groups. At the root of this result is a strategic complementarity in repression: anticipating

greater repression by radicals in future radical environments, the current political system now

becomes more willing to repress the radicals. One interesting implication of this result is that

differences in repression of opposite ends of the political spectrum across societies may result

from small differences in (institutional or social) costs of repression rather than a “culture of

repression” in some countries. Thus, the repression of first left- and then right-wing groups in

early 20th-century Russia, contrasted with a lack of such systematic repression in Britain, may

not just be a reflection of a Russian culture of repression, but a game-theoretic consequence of

the anticipation of different patterns of repression in different political states in Russia.

28



4.2 Institutional experimentation

Our second application is one of collective experimentation over institutions. In many institu-

tional reforms, which are marred with uncertainty, a key concern of incumbent decision-makers

is the possibility that they may lose political control and may not be able to reverse certain

aspects of prior reforms even if these turn out to be highly detrimental. These issues are illus-

trated, for example, by trade-offs post-socialist countries faced during their transitions. A key

uncertainty this process concerned the optimal sequencing of institutional reforms, especially

about property rights protection and legal system, and privatization (e.g., Roland, 2000). An

attractive strategy under such uncertainty might be experimentation, for example, starting with

the privatization of some large state-owned enterprises. But this early privatization may then

cause both the establishment of politically powerful strong vested interests and also backlash

from voters depending on its effi ciency and distributional consequences.31

Formally, there are again several players (representing groups) indexed by i = 1, ..., n. The

stage payoff of player i in state s when policy p is implemented is given by

wi (s, p) = Bs − (bi − p)2 ,

where bi is its bliss point and Bs denotes utility from state s which is shared by all players (e.g.,

quality of government or public goods provision) and will be modeled below. We assume that

bi is increasing in i which ensures that Assumption 2 holds.

We assume that there are n states, and that in state i < n, player i is the unique QMV

(decision-maker) and sets the policy and decides on transitions to a different state. The value of

parameter B in these states is also known, and assumed, for simplicity, to be weakly increasing

in i: B1 ≤ B2 ≤ · · · ≤ Bn−1.

In state n, policy is chosen by player n, but the value of Bn and the identity of the decision-

maker in state n are not known ex ante. In particular, Bn takes the value Bh with probability γ

and the value Bl < Bh with probability 1−γ. Moreover, we simplify the discussion by assuming

that in state n, player n always decides the policy, but controls transitions only with probability

µ (i.e., player n is the unique QMV, or Mn = n), and with probability 1− µ, it is player n− 1

who retains control over transitions (i.e., Mn = n− 1). This structure ensures that Assumption

31 Indeed, Hellman (1998) observes that big winners from the early stage of reforms later became major obstacles
to the next stage of reform. In Russia, banks created at the beginning of the reform process were later strongly
opposed to government attempts to bring down inflation (Shleifer and Treisman, 2000).
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4 holds. Again for simplicity, we also assume that Bn and Mn are independent, and that the

society always learns about Bn and Mn at the same time.32

Learning takes place in two ways. First, if society moves to state n, the true values of Bn

and Mn will be revealed. Second, in each period, there is probability λ ∈ [0, 1] that these values

will be revealed even when society is not in state n. This could be, for example, because there is

passive learning from another country in the midst of a similar experiment, or current political

dynamics will provide insights about what will happen in state n. The initial environment is

denoted by E0 and society starts in one of the states 1, . . . , n−1. The realizations of Bn andMn

define four additional environments Eh,n−1, El,n−1, Eh,n, El,n. A MVE is therefore a collection

of five mappings φ0,
{
φBn,Mn

}
that satisfy Definition 3.

Several comments are in order. First, this model is related to Fernandez and Rodrik (1991)

and particularly to Strulovici’s (2010) important paper on strategic experimentation by voting,

but with a crucial difference. In both of these models, learning is about individual idiosyncratic

preferences, whereas in our paper learning is about characteristics of different states that affect

all individuals. In this sense, the experimentation is over institutions, rather than over individual

preferences. Second, the assumptions are meant to capture the uncertainty over both the payoff

implications of moving to new states (that have not been tried yet) and the uncertainty over who

controls political power in these states. For instance, in addition to the post-socialist transition

example discussed above, we can think of state n as corresponding to a reform deregulating a

particular industry. The benefits of deregulation will be learned after it has been tried, but

other evidence or research may reveal its value even without active experimentation. There is

also some possibility that industry insiders maybe able to amass significant power and prevent a

reversal of this deregulation even if it is revealed to be a failure. The rest of the players are ranked

in terms of their dislike of this deregulation, and the assumption that when industry insiders

capture the power over the form of regulation, transitions are controlled by the neighboring

group is for simplicity.

The next proposition follows directly from Theorems 3 and 4 by verifying that our baseline

assumptions are satisfied.

Proposition 6 In the environment described above, there exists a unique MVE given by the

monotone mappings φ0,
{
φBn,Mn

}
.

32Both assumptions can be relaxed relatively straightforwardly. For example, we could assume that n − 1 is
initially in control, but every period agent n may succeed in consolidating power.
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The key question in this model is whether there will be experimentation with state n. Ex-

perimentation is represented by φ0 (n− 1) = n, i.e., by whether there will be a move to state n

while there is uncertainty about its payoff and power implications. We assume in what follows

that

Bl < Bn−1 + (bn − bn−1)2 < Bh.

This ensures that group n − 1 would prefer to move to state n if it knew that Bn = Bh, but

not when Bn = Bl. Then from increasing differences (Assumption 2), we also have that group

n strictly prefers state n when Bn = Bh (but may or may not do so if Bn = Bl).

Proposition 7 Let Y ≡ γ
1−γ

Bh−(bn−bn−1)2−Bn−1
Bn−1+(bn−bn−1)2−Bl .

(i) Suppose that Bn−1 − (bn − bn−1)2 > Bl. Then φl,· (n) = n − 1 and φh,· (n) = n, and

there is experimentation if and only if Y > 1 − β (1− λ). This condition does not depend on

µ; experimentation will take place for a wider set of parameter values when β is higher or λ is

lower.

(ii) Conversely, suppose that Bn−1 − (bn − bn−1)2 < Bl. Then φl,n−1 (n) = n − 1 and

φ·,· (n) = n otherwise. Society experiments if and only if Y > (1−β+βλ)(1−β+βµ)
1−β , which holds for

a wider set of parameter values when λ is lower or µ is lower. Moreover, if λ+ µ ≥ 1, then an

increase in β makes the set of parameter values for which experimentation takes place smaller,

and if λ + µ < 1, the effect of β is nonmononotone: it is inverse U-shaped, reaching a local

maximum in the interior and local minima at β = 0 and 1.

The decision by group n−1 to experiment therefore depends on Y , which is, very intuitively,

the ratio of potential gain from being in state n with Bn = Bh, as compared to the baseline (“safe

option”) of Bn−1, to (the absolute value of) the potential loss if Bn = Bl, weighted, naturally,

with the probabilities of the two outcomes, γ and 1 − γ, respectively (Y > 1 if and only if

EBn − (bn − bn−1)2 > Bn−1). Society experiments if the ratio Y exceeds a certain threshold.

Unsurprisingly, experimentation is “more likely” if λ is low; intuitively, if the society is very

likely to learn Bn without trying it, it makes more sense to wait until it happens. For fixed

payoffs, a Shigher γ also makes experimentation more likely, as increases the odds of a high value

of Bn. Furthermore, if the interests of groups n−1 and n regarding experimentation are aligned

(so group n prefers state n− 1 if Bn = Bl), then a high discount factor makes experimentation

more likely. Indeed, in this case, if Bn = Bl, then the low payoff will be experienced for at

most one period, and if β is high, the relative impact of this period to the lifetime payoff grows

31



smaller. In addition, the society experiments for any β if Y > 1, i.e, if even the average payoff

EBn − (bn − bn−1)2 exceeds Bn−1.

The results are different in the second case, where group n prefers state n regardless of the

realization of Bn and will stay in this state if it can. In this case, experimentation is risky and

need not happen even if Y > 1 (provided that λ 6= 0): in this case, instead of taking a chance,

group n − 1 may find it prudent to wait and find out the value of Bn. These considerations

are more pronounced if the likelihood of group n seizing power is higher, so experimentation is

less likely for high µ. The comparative statics with respect to β is ambiguous, because of two

effects. On the one hand, similar to the previous case, a higher discount factor decreases the

significance of one period of experimentation, and this makes experimentation more likely. On

the other hand, a higher discount factor also makes waiting to learn Bn without taking risks

more attractive. It turns out that for low λ and µ the first effect dominates; for high λ and µ

(or high β) the second one does.

The next result shows that the response of experimentation to changes in riskiness of the

experiment is potentially non-monotone.

Proposition 8 Suppose EBn − (bn − bn−1)2 > Bn−1; λ, µ > 0, and β is suffi ciently close to

1. For a fixed EBn and γ, vary the spread ∆ ≡ Bh − Bl. Then the decision to experiment is

non-monotone in ∆: there exist two thresholds ∆1 < ∆2 such that there is experimentation if

∆ < ∆1 or ∆ > ∆2, but no experimentation if ∆ ∈ (∆1,∆2).

If the spread between Bh and Bl is small, then the downside risk from experimentation

for group n − 1 is small, even if this experimentation leads to society being stuck forever in

state n; hence experimentation takes place for small ∆. As this spread increases, the downside

risk to group n− 1 becomes substantial because, when it controls political power, group n will

prefer to stay in state n permanently; in this case, group n − 1 prefers to wait rather than

experiment. However, if this spread becomes suffi ciently large, the interests of groups n− 1 and

n become aligned; in this case, the effective risk of having to stay in state n forever disappears,

and experimentation again takes place. Overall, therefore, experimentation is less likely to take

place when the downside risk is moderate, but more likely when this risk is low or high –

because this risk also affects the nature of the conflict of interest between groups.
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5 Conclusion

This paper has provided a general framework for the analysis of dynamic political economy prob-

lems, including democratization, extension of political rights or repression of different groups.

The distinguishing feature of our approach is that it enables an analysis of nonstationary, sto-

chastic environments (which allow for anticipated and unanticipated shocks changing the dis-

tribution of political power and economic payoffs) under fairly rich heterogeneity and general

political or economic conflict across groups.

We assume that the payoffs are defined either directly on states or can be derived from

states, which represent economic and political institutions. For example, different distribution

of property rights or adoption of policies favoring one vs. another group correspond to different

states. Importantly, states also differ in their distribution of political power: as states change,

different groups become politically pivotal (and in equilibrium different coalitions may form).

Our notion of equilibrium is Markov Voting Equilibrium, which requires that economic and

political changes – transitions across states – should take place if there exists a subset of players

with the power to implement such changes and who will obtain higher expected discounted utility

by doing so.

We assume that both states and players are “ordered” (e.g., states go from more right-

wing to more left-wing, or less to more democratic, and players are ordered according to their

ideology or income level). Our most substantive assumptions are that, given these orders, stage

payoffs satisfy a “single crossing”(increasing differences) type assumption, and the distribution

of political power also shifts in the same direction as economic preferences (e.g., individuals with

preferences further to the right gain relatively more from moving towards states further to the

right, and their political power does not decrease if there is a transition towards such a state).

Under these assumptions, we prove the existence of a pure-strategy equilibrium, provide

conditions for its uniqueness, and show that a steady state always exists (though it generally

depends on the order and exact timing of shocks). We also provide some comparative static

results that apply at this level of generality. For example, if there is a change from one envi-

ronment to another (with different economic payoffs and distribution of political power) but the

two environments coincide up to a certain state s′ and before the change the steady state of

equilibrium was at some state x ≤ s′, then the new steady state after the change in environment

can be no smaller than x.
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We then use this framework to study the dynamics of repression in the presence of radical

groups that can stochastically grab power depending on the distribution of political rights in

society. We characterize the conditions under which the presence of radicals leads to greater

repression (of less radical groups) and identify a novel strategic complementarity in repression.

We also provide an application to the problem of collective experimentation over different insti-

tutions.

Our framework can be extended and applied in several different directions, which constitute

interesting area for future research. The first is to incorporate greater individual-level hetero-

geneity, which can change over time (e.g., a type of “social mobility”), a topic we are actively

pursuing. More challenging is the study of problems in which heterogeneity cannot be reduced to

a single dimension, which opens the door for more complex strategic interactions and dynamics

– and a broader set of applications. Some of the important applications of the framework we

have proposed, which constitute interesting area for future research, go beyond political econ-

omy and include problems in organizational economics (in particular focusing on the internal

politics of the firm) and international relations (relationships between countries and dynamics

of secessions and civil wars).
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Appendix A

Lemmas

We start with a number of lemmas, which play a central role in establishing important properties

of MVE and form the foundation of all of our main proofs.

Lemma 1 Suppose that vector {wi (·)} satisfies increasing differences on N × {x, y} for some

x, y ∈ S. Let

P = {i ∈ N : wi (y) > wi (x)} ,

and take any s ∈ S. Then P ∈ Ws if and only if Ms ⊂ P . A similar statement is true for

relations ≥, <, ≤.

Proof. “If”: Suppose Ms ⊂ P , so for each i ∈ Ms, wi (y) > wi (x). Consider two cases. If

y > x, then increasing differences implies that wj (y) > wj (x) for all j ≥ minMs. On the other

hand, [minMs, n] is a winning coalition (if not, i = Ms − 1 would be a QMV by definition,

but such i /∈ Ms). If y < x, then, similarly, wj (y) > wj (x) for all j ≤ maxMs, which is a

winning coalition for similar reasons. In either case, P contains a subset (either [minMs, n] or

[1,maxMs]) which is a winning coalition, and thus P ∈Ws.

“Only if”: Suppose P ∈ Ws. Consider the case y > x. Let i = minP ; then increasing

differences implies that for all j ≥ i, wj (y) > wj (x). This means that P = [i, n], and is thus a

connected coalition. Since P is winning, we must have i ≤ j ≤ n for any j ∈ Ms by definition

of Ms, and therefore Ms ⊂ P . The case where y < x is similar, so Ms ⊂ P .

The proofs for relations ≥, <, ≤ are similar and are omitted.

For each s ∈ S, let us introduce the binary relation >s on the set of n-dimensional vectors

to designate that there exists a winning coalition in s strictly preferring one payoff vector to

another. Formally:

w1 >s w
2 ⇔

{
i ∈ N : w1

i > w2
i

}
∈Ws.

The relation ≥s is defined similarly. Lemma 1 now implies that if a vector {wi (x)} satisfies

increasing differences, then for any s ∈ S, the relations >s and ≥s are transitive on {wi (x)}x∈S .

Notice that for this result, we need only two assumptions: Assumption 3 on winning coalitions

in state s ensures existence of the (nonempty) set of QMVs Ms, and we need vector {wi (x)}x∈S
to satisfy increasing differences.
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Lemma 2 Suppose Assumption 2 holds. Then, for a mapping φ : S → S, the vector{
V φ
i (s)

}s∈S
i∈N

, given by (4), satisfies increasing differences if

1. φ is monotone; or

2. for all x ∈ S, |φ (x)− x| ≤ 1.

Proof. Part 1. Take y > x and any i ∈ N . We have:

V φ
i (y)− V φ

i (x) = ui (y) +
∑∞

k=1
βkui

(
φk (y)

)
− ui (x)−

∑∞

k=1
βkui

(
φk (x)

)
= (ui (y)− ui (x)) +

∑∞

k=1
βk
(
ui

(
φk (y)

)
− ui

(
φk (x)

))
.

The first term is (weakly) increasing in i if {ui (s)}s∈Si∈N satisfies increasing differences, and the

second is (weakly) increasing in i as φk (y) ≥ φk (x) for k ≥ 1 due to monotonicity of φ.

Consequently, (4) is (weakly) increasing in i.

Part 2. If φ is monotone, then Part 1 applies. Otherwise, for some x < y we have φ (x) >

φ (y), and this means that y = x+ 1; there may be one or more such pairs. Notice that for such

x and y, we have φ (x) = y and φ (y) = x. Consider

V φ
i (y)− V φ

i (x) =
(
ui (y) +

∑∞

k=1
β2k−1ui (x) +

∑∞

k=1
β2kui (y)

)
−
(
ui (x) +

∑∞

k=1
β2k−1ui (y) +

∑∞

k=1
β2kui (x)

)
=

1

1 + β
(ui (y)− ui (x)) ;

this is (weakly) increasing in i.

Let us now modify stage payoffs and define

ũi (x) =

{
ui (x) if φ (x) = x or φ2 (x) 6= x;

(1− β)Vi (x) if φ (x) 6= x = φ2 (x) .

Consider mapping φ̃ given by

φ̃ (s) =

{
φ (x) if φ (x) = x or φ2 (x) 6= x;
x if φ (x) 6= x = φ2 (x) .

This φ̃ is monotone and {ũi (x)}x∈Si∈N satisfies increasing differences. By Part 1, the continuation

values
{
Ṽ φ̃
i (x)

}x∈S
i∈N

computed for φ̃ and {ũi (x)}x∈Si∈N using (4) satisfy increasing differences as

well. But by construction, Ṽ φ̃
i (x) = V φ

i (x) for each i and s, and thus
{
V φ
i (x)

}x∈S
i∈N

satisfies

increasing differences.
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Lemma 3 (Monotone Deviation Principle) Suppose that φ : S → S is feasible (part 1 of

Definition 3) and monotone but the core property (part 2 of Definition 3) is violated. Then there

exist x, y ∈ S such that y ∈ F (x),

V φ (y) >x V
φ (φ (x)) . (A1)

and the mapping φ′ : S → S given by

φ′ (s) =

{
φ (s) if s 6= x
y if s = x

(A2)

is monotone.

Proof. Existence of x, y ∈ S such that y ∈ F (x) and (A1) holds follows from failure of part 2

of Definition 3. We show that for some pair of such x, y, (A2) is monotone.

Suppose, to obtain a contradiction, that for each x, y ∈ S such that y ∈ F (x) and (A1) holds,

φ′ given by (A2) is not monotone. Take x, y ∈ S such that |y − φ (x)| is minimal among all pairs

x, y ∈ S such that y ∈ F (x) and (A1) holds (informally, we consider the shortest deviation).

By our assertion, φ′ is not monotone. Since φ is monotone and φ and φ′ differ by the value

at x only, there are two possibilities: either for some z < x, y = φ′ (x) < φ (z) ≤ φ (x) or for

some z > x, φ (x) ≤ φ (z) < φ′ (x) = y. Assume the former (the latter case may be considered

similarly). Let s be defined by

s = min (z ∈ S : φ (z) > y) ;

in the case under consideration, the set of such z is nonempty (e.g., x is its member, and z found

earlier is one as well), and hence state s is well-defined. We have s < x; since φ is monotone,

φ (s) ≤ φ (x).

Notice that a deviation in state s from φ (s) to y is monotone: indeed, there is no state z̃

such that z̃ < s and y < φ (z̃) ≤ φ (s) by construction of s, and there is no state z̃ > s such

that φ (s) ≤ φ (z̃) < y as this would contradict φ (s) > y. Moreover, it is feasible, so y ∈ F (s):

this is automatically true if y = s; if y > s, this follows from s < y < φ (s); and if y < s, this

follows from y = φ′ (x) and y < s ≤ x. By assertion, this deviation cannot be profitable, i.e.,

V φ (y) ≯s V φ (φ (s)). By Lemma 2, since y < φ (s), V φ
maxMs

(y) ≤ V φ
maxMs

(φ (s)). Since s < x,

Assumption 4 implies (for i = maxMx) V
φ
i (y) ≤ V φ

i (φ (s)).

On the other hand, (A1) implies V φ
i (y) > V φ

i (φ (x)). We therefore have

V φ
i (φ (s)) ≥ V φ

i (y) > V φ
i (φ (x)) (A3)
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and thus, by Lemma 2, since φ (s) < φ (x) (we know φ (s) ≤ φ (x), but φ (s) = φ (x) would

contradict (A3)),

V φ (φ (s)) >x V
φ (φ (x)) .

Notice, however, that y < φ (s) < φ (x) implies that |φ (s)− φ (x)| < |y − φ (x)|. This

contradicts the choice of y such that |y − φ (x)| is minimal among pairs x, y ∈ S such that

y ∈ F (x) and (A1) is satisfied. This contradiction proves that our initial assertion was wrong,

and this proves the lemma.

Lemma 4 (No Double Deviation) Let a ∈ [1,m− 1], and let φ1 : [1, a] → [1, a] and φ2 :

[a+ 1,m]→ [a+ 1,m] be two monotone mappings which are MVE on their respective domains.

Let φ : S → S be defined by

φ (s) =

{
φ1 (s) if s ≤ a
φ2 (s) if s > a

(A4)

Then exactly one of the following is true:

1. φ is a MVE on S;

2. there is z ∈ [a+ 1, φ (a+ 1)] such that z ∈ F (a) and V φ (z) >a V
φ (φ (a));

3. there is z ∈ [φ (a) , a] such that z ∈ F (a+ 1) and V φ (z) >a+1 V
φ (φ (a+ 1)).

Proof. We show first that if [1] is the case, then [2] and [3] are not satisfied. We then show

that if [1] does not hold, then either [2] or [3] are satisfied, and complete the proof by showing

that [2] and [3] are mutually exclusive.

First, suppose, to obtain a contradiction, that both [1] and [2] hold. Then [2] implies that for

some z ∈ [a+ 1, φ (a+ 1)] such that z ∈ F (a), V φ (z) >a V
φ (φ (a)), but this contradicts that φ

is MVE, so [1] cannot hold. We can similarly prove that if [1] holds, then [3] is not satisfied.

Second, suppose that [1] does not hold. Notice that for any x ∈ S, φ (x) ∈ F (x) and

V φ (φ (x)) ≥x V φ (x), because these properties hold for φ1 if x ∈ [1, a] and for φ2 if x ∈ [a+ 1,m].

Consequently, if φ is not MVE, then it is because the (core) condition in Definition 3 is violated.

Lemma 3 then implies existence of a monotone deviation, i.e., x, y ∈ S such that y ∈ F (x) and

V φ (y) >x V
φ (φ (x)). Since φ1 and φ2 are MVE on their respective domains, we must have that

either x ∈ [1, a] and y ∈ [a+ 1,m] or x ∈ [a+ 1,m] and y ∈ [1,m]. Assume the former; since

the deviation is monotone, we must have x = a and a + 1 ≤ y ≤ φ (a+ 1). Hence, we have
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V φ (y) >a V
φ (φ (a)), and this shows that [2] holds. If we assumed the latter, we would similarly

get that [3] holds. Hence, if [1] does not hold, then either [2] or [3] does.

Third, suppose that both [2] and [3] hold. Let

x ∈ arg max
z∈[φ(a),φ(a+1)]∩F (a)

V φ
minMa

(z) ,

y ∈ arg max
z∈[φ(a),φ(a+1)]∩F (a+1)

V φ
maxMa+1

(z) ;

then x ≥ a + 1 > a ≥ y. By construction, V φ
minMa

(x) > V φ
minMa

(y) and V φ
maxMa+1

(y) >

V φ
maxMa+1

(x) (the inequalities are strict because they are strict in [2] and [3]). But this vio-

lates the increasing differences that
{
V φ
i (s)

}s∈S
i∈N

satisfies as φ is monotone (indeed, minMa ≤

maxMa+1 by Assumption 4). This contradiction proves that [2] and [3] are mutually exclusive,

which completes the proof.

Lemma 5 (Extension of Equilibrium) Let S̃ = [1,m− 1]. Suppose that φ : S̃ → S̃ is a

monotone MVE and that F (m) 6= {m}. Let

a = max

(
arg max

b∈[φ(m−1),m−1]∩F (m)
V φ

maxMm
(b)

)
. (A5)

If

V φ (a) >m u (m) / (1− β) , (A6)

then mapping φ′ : S → S defined by

φ′ (s) =

{
φ (s) if s < m
a if s = m

is a monotone MVE. A similar statement, mutatis mutandis, applies for S̃ = [2,m].

Proof. Mapping φ′ satisfies property 1 of Definition 3 by construction. Let us show that it

satisfies property 2. Suppose, to obtain a contradiction, that this is not the case. By Lemma 3,

there are states x, y ∈ S such that

V φ′ (y) >x V
φ′
(
φ′ (x)

)
, (A7)

and this deviation is monotone. Suppose first that x < m, then y ≤ φ (m) = a ≤ m − 1.

For any z ≤ m − 1,
(
φ′
)k

(z) = φk (z) for all k ≥ 0, and thus V φ′ (z) = V φ (z); therefore,

V φ (y) >x V
φ (φ (x)). However, this would contradict that φ is a MVE on S̃. Consequently,

x = m. If y < m, then (A7) implies, given a = φ′ (m),

V φ (y) >m V φ (a) . (A8)
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Since the deviation is monotone, y ∈ [φ (m− 1) ,m− 1], but then (A8) contradicts the choice of

a in (A5). This implies that x = y = m, so (A7) may be rewritten as

V φ′ (m) >m V φ (a) . (A9)

But since

V φ′ (m) = u (m) + βV φ (a) , (A10)

(A9) implies

u (m) >m (1− β)V φ (a) .

This, however, contradicts (A6), which proves that φ′ satisfies property 2 of Definition 3.

To prove that φ′ is MVE, we need to establish that it satisfies property 3 of Definition 3, i.e.,

V φ′
(
φ′ (x)

)
≥x V φ′ (x) (A11)

for each x ∈ S. If x ∈ S̃ (i.e., x < m), then
(
φ′
)k

(x) = φk (x) for any k ≥ 0, so (A11) is

equivalent to V φ (φ (x)) ≥x V φ (x), which is true for x < m, because φ is MVE on S̃. It remains

to prove that (A11) is satisfied for x = m. In this case, (A11) may be rewritten as

V φ (a) ≥m V φ′ (m) . (A12)

Taking (A10) into account, (A12) is equivalent to (1− β)V φ (a) ≥m u (m),which is true, pro-

vided that (A6) is satisfied. We have thus proved that φ′ is MVE on S, which completes the

proof.

Proofs of Theorems 1-8

Proof of Theorem 1. We prove this result by induction by the number of states. For any set

X, let ΦX be the set of monotone MVE, so we have to prove that ΦX 6= ∅.

Base: If m = 1, then φ : S → S given by φ (1) = 1 is monotone MVE for trivial reasons, so

ΦS 6= ∅ is |S| = 1.

Induction Step: Suppose that if |S| < m, then ΦS 6= ∅. Let us prove this if |S| = m. Consider

the set A = [1,m− 1], and for each a ∈ A, consider two monotone MVE φa1 : [1, a]→ [1, a] and

φa2 : [a+ 1,m]→ [a+ 1,m]. Without loss of generality, we may assume that

φa1 ∈ arg max
φ∈Φ[1,a],z∈[φ(a),a]∩F (a+1)

V φ
maxMa+1

(z) ,

φa2 ∈ arg max
φ∈Φ[a+1,m],z∈[a+1,φ(a+1)]∩F (a)

V φ
minMa

(z)

40



(whenever [φ (a) , a] ∩ F (a+ 1) = ∅ or [a+ 1, φ (a+ 1)] ∩ F (a) are empty, we pick any φa1 or

φa2, respectively). For each a ∈ A, define φa : S → S by

φa (s) =

{
φa1 (s) if s ≤ a
φa2 (s) if s > a

.

Let us define function f : A → {1, 2, 3} as follows. By Lemma 4, for every split S =

[1, a] ∪ [a+ 1,m] given by a ∈ A and for MVE φa1 and φ
a
2, exactly one of three properties hold;

let f (a) be the number of the property. Then, clearly, if for some a ∈ A, f (a) = 1, then φa is a

monotone MVE by construction of function f .

Now let us consider the case where for every a ∈ A, f (a) ∈ {2, 3}. We have the following

possibilities.

First, suppose that f (1) = 2. This means that (since φa1 (1) = 1 for a = 1)

arg max
z∈[1,φ(2)]∩F (1)

V φ1

minM1
(z) ⊂

[
2, φ1 (2)

]
. (A13)

Let

b ∈ arg max
z∈[2,φ(2)]∩F (1)

V φ1

minM1
(z) (A14)

and define φ′ : S → S by

φ′ (s) =

{
b if s = 1

φ1 (s) if s > 1
; (A15)

let us prove that φ′ is a MVE. Notice that (A13) and (A14) imply

V φ1

minM1
(b) > V φ1

minM1
(1) .

By Lemma 2, since b > 1,

V φ1 (b) >1 V
φ1 (1) . (A16)

Notice, however, that

V φ1 (1) = u (1) / (1− β) ,

and also V φ1 (b) = V φ12 (b); therefore, (A16) may be rewritten as

V φ12 (b) >1 u (1) / (1− β) .

By Lemma 5, φ′ : S → S defined by (A15), is a MVE.

Second, suppose that f (m− 1) = 3. In this case, using the first part of Lemma 5, we can

prove that there is a MVE similarly to the previous case.
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Finally, suppose that f (1) = 3 and f (m− 1) = 2 (this already implies m ≥ 3), then there

is a ∈ [2,m− 1] such that f (a− 1) = 3 and f (a) = 2. Define, for s ∈ S \ {a} and i ∈ N ,

V ∗i (s) =

{
V
φa−11
i (s) if s < a

V
φa2
i (s) if s > a

.

Let us first prove that there exists b ∈
([
φa−1

1 (a− 1) , a− 1
]
∪ [a+ 1, φa2 (a+ 1)]

)
∩ F (a) such

that

V ∗ (b) >a u (a) / (1− β) , (A17)

and let B be the set of such b (so B ⊂
([
φa−1

1 (a− 1) , a− 1
]
∪ [a+ 1, φa2 (a+ 1)]

)
∩ F (a)).

Indeed, since f (a− 1) = 3,

arg max
z∈[φa−1(a−1),φa−1(a)]∩F (a)

V φa−1

maxMa
(z) ⊂

[
φa−1 (a− 1) , a− 1

]
. (A18)

Let

b ∈ arg max
z∈[φa−1(a−1),a−1]∩F (a)

(
V φa−1

maxMa
(z)
)
, (A19)

then (A18) and (A19) imply

V φa−1

maxMa
(b) > V φa−1

maxMa
(a) . (A20)

By Lemma 2, since b < a,

V φa−1 (b) >a V
φa−1 (a) . (A21)

We have, however,

V φa−1 (a) = V φa−12 (a) = u (a) + βV φa−12
(
φa−1

2 (a)
)
≥a u (a) + βV φa−12 (a) = u (a) + βV φa−1 (a)

(V φa−1 (a) = V φa−12 (a) by definition of φa−1, and the inequality holds because φa−1
2 is MVE on

[a,m]). Consequently, (A20) and (A21) imply (A17). (Notice that using f (a) = 2, we could

similarly prove that there is b ∈ [a+ 1, φa (a+ 1)] such that (A17) holds.)

Let us now take some QMV in state a, j ∈Ma, and state d ∈ B such that

d = arg max
b∈B

V ∗j (b) , (A22)

and define monotone mapping φ : S → S as

φ (s) =


φa−1

1 (s) if s < a
d if s = a

φa2 (s) if s > a

(note that V φ (s) = V ∗ (s) for x 6= a). Let us prove that φ is a MVE on S.
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By construction of d in (A22), we have that b ∈
[
φa−1

1 (a− 1) , φa2 (a+ 1)
]
∩ F (a) implies

V φ (b) ≯a V φ (d) .

This is automatically true for b ∈ B, whereas if b /∈ F (a)\B and b 6= a, the opposite would imply

V φ (b) >a u (a) / (1− β), which would contradict b /∈ B; finally, if b = a, V φ (a) >a V
φ (d) is

impossible, as this would imply u (a) >a (1− β)V φ (d) contradicting (A17), given the definition

of d (A22). Now, Lemma 5 implies that φ′ = φ|[1,a] is a MVE on [1, a].

Suppose, to obtain a contradiction, that φ is not MVE. Since φ is made from MVE φ′ on

[1, a] and MVE φa2 on [a+ 1,m], properties 1 and 3 of Definition 3 are satisfied, and by Lemma

4 there are only two possible monotone deviations that may prevent φ from being MVE. First,

suppose that for some y ∈ [a+ 1, φa2 (a+ 1)] ∩ F (a),

V φ (y) >a V
φ (d) . (A23)

However, this would contradict (A22) (and if y /∈ B, then (A23) is impossible as d ∈ B). The

second possibility is that for some y ∈ [d, a] ∩ F (a+ 1), we have

V φ (y) >a+1 V
φ (φa2 (a+ 1)) .

This means that V φ
maxMa+1

(y) > V φ
maxMa+1

(φa2 (a+ 1)). At the same time, for any x ∈

[a+ 1, φa2 (a+ 1)] ∩ F (a), we have V φ
maxMa+1

(x) ≤ V φ
maxMa+1

(φa2 (a+ 1)) (otherwise Lemma

2 would imply a profitable deviation to x). This implies that for any such x, V φ
maxMa+1

(y) >

V φ
maxMa+1

(x). Now, recall that

φa1 ∈ arg max
φ∈Φ[1,a],z∈[φ(a),a]∩F (a)

V φ
maxMa+1

(z) .

This means that there is z ∈ [φa1 (a) , a] ∩ F (a) such that

V
φa1

maxMa+1
(z) ≥ V φ

maxMa+1
(y) ,

and thus for any x ∈ [a+ 1, φa2 (a+ 1)] ∩ F (a),

V
φa1

maxMa+1
(z) > V φ

maxMa+1
(x) .

But φa1 = φa on the left-hand side, and φ = φa on the right-hand side. We therefore have that

the following maximum is achieved on [φa (a) , a]:

arg max
z∈[φa(a),φa(a+1)]∩F (a)

V φa

maxMa+1
(z) ⊂ [φa (a) , a] ,

43



i.e., that [3] in Lemma 4 holds. But this contradicts that f (a) = 2. This contradiction completes

the induction step, which proves existence of a monotone MVE for any S.

Finally, suppose that φ is a monotone MVE; take any s0. If φ (s0) ≥ s0, then monotonicity

implies φ2 (s0) ≥ φ (s0) etc, and thus the sequence
{
φk (s0)

}
is weakly increasing in k. It must

therefore have a limit. A similar reasoning applies if φ (s0) < s0, which completes the proof. �

Proof of Theorem 2. We need to establish that the equilibrium is generically unique.

For the purpose of this proof and other proofs in the paper, we call the set of parameters

generic if β and {π (E,E′)}E,E′∈E satisfy the following: For any agent i and any set of mappings

{φE : S → S}E∈E , the continuation values that solve (2) are such that for any environment E ∈ E

and any two different states x, y ∈ S, V φ
E,i (x) 6= V φ

E,i (y). In other words, this says that an agent is

never indifferent between two states, regardless of continuation paths that will follow. Note that

even though the statement involves continuation values, it is in fact an assumption on primitives,

because the solution to (2) is uniquely determined by the primitives on the model. Indeed, one

can rewrite (2) as (I+ Ω)V φ
E,i (s) = uE,i (s), where I is the mh × mh identity matrix, and Ω

is a matrix the elements of which depend on β and {π (E,E′)}E,E′∈E . Ω defines a contraction

mapping (in the sup norm), and thus I+ Ω is invertible, and V φ
E,i (s) = (I+ Ω)−1 uE,i (s). This

gives us no more than n × mmh × h × m(m−1)
2 linear conditions on utilities {uE,i (s)}, which

proves that the set of parameter values for which the condition above fails indeed has Lebesgue

measure zero both in the set of feasible payoffs {uE,i (s)}E∈Es∈S for fixed β and {π (E,E′)}E,E′∈E
and in the set of all parameters

(
β, {π (E,E′)}E,E′∈E , {uE,i (s)}E∈Es∈S

)
.

From now on, suppose that parameters satisfy the above condition. Under either of the

assumptions of this theorem, any MVE is monotone; this follows from Theorem 7 which is

proved below.

Suppose, to obtain a contradiction, that there are two MVE φ1 and φ2; then they are

monotone by the argument above. Without loss of generality, assume that m is the minimal

number of states for which this is possible, i.e., if |S| < m, then MVE is unique. Obviously,

m ≥ 2. Consider the set Z = {x ∈ S | φ1 (x) 6= φ2 (x)}, and denote a = minZ, b = maxZ.

Without loss of generality, assume that φ1 and φ2 are enumerated such that φ1 (a) < φ2 (a).

Let us first show that if φ1 (x) = x or φ2 (x) = x, then x = 1 or x = m. Indeed, suppose first

that φ1 (x) = x and consider φ2 (x). If φ2 (x) < x, then φ1|[1,x] 6= φ2|[1,x] are two MVE for the set

of states [1, x], which contradicts the choice of m. If φ2 (x) > x, we get a similar contradiction

for [x,m], and if φ2 (x) = x, we get a contradiction by considering [1, x] if a < x and [x,m] if
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a > x. The case where φ2 = x may be considered similarly. At this point, the proofs for the two

parts diverge.

Part 1. Let us first prove that the following is true (auxiliary result): a < m; b > 1; if

x ∈ [max {2, a} , b], then φ1 (x) < x ≤ φ2 (x); if x ∈ [a,min {b,m− 1}], then φ1 (x) ≤ x < φ2 (x).

Assume first, to obtain a contradiction, that a = m. Then Z = {m}, so φ1|[1,m−1] =

φ2|[1,m−1]; in this case, φ1 (m) 6= φ2 (m) is impossible for generic parameter values (see the

definition above). We would get a similar contradiction if b = 1, which proves that a < m and

b > 1, thus proving the first part of the auxiliary result.

Let us now show that for x ∈ [a, b] \ {1,m}, we have that either φ1 (x) < x < φ2 (x) or

φ2 (x) < x < φ1 (x). Indeed, neither φ1 (x) = x nor φ2 (x) = x is possible. If φ1 (x) < x and

φ2 (x) < x, then φ1|[1,x] and φ2|[1,x] are two different MVE on [1, x], which is impossible; we get

a similar contradiction if φ1 (x) > x and φ2 (x) > x. This also implies that if a < x < b, then

x ∈ Z.

We now prove that for any x ∈ Z, φ1 (x) < φ2 (x). Indeed, suppose that φ2 (x) > φ1 (x)

(equality is impossible as x ∈ Z); then x > a ≥ 1. If x < m, then, as we proved, we must have

φ2 (x) < x < φ1 (x), and if x = m, then φ2 (x) < φ1 (x) ≤ m = x. In either case, φ2 (x) < x, and

since φ2 (a) > φ1 (a) ≥ 1, then by monotonicity of φ2 there must be y : 1 ≤ a < y < x ≤ m such

that φ2 (y) = y, but we proved that this is impossible. Hence, φ1 (x) < φ2 (x) for any x ∈ Z,

and using the earlier result, we have φ1 (x) < x < φ2 (x) for any x ∈ Z \ {1,m}.

To complete the proof of the auxiliary result, it suffi ces to show that φ1 (1) = 1 and φ2 (m) =

m. Suppose, to obtain a contradiction, that φ1 (1) > 1. We then have φ2 (1) > 1, then φ1 (2) ≥ 2

and φ2 (2) ≥ 2 and thus φ1|[2,m] and φ2|[2,m] are MVE on [2,m], and since b 6= 1, they must be

different, which would again contradict the choice of m. We would get a similar contradiction if

φ2 (m) = m. This completes the proof of the auxiliary result.

To complete the proof of the theorem, notice that the auxiliary result implies, in particular,

that Z = [a, b] ∩ S, so Z has no “gaps”. We define function g : Z → {1, 2} as follows. If

V
φ1
Mx

(φ1 (x)) > V
φ2
Mx

(φ2 (x)), then g (x) = 1, and if V φ1
Mx

(φ1 (x)) < V
φ2
Mx

(φ2 (x)), then g (x) = 2

(the case V φ1
Mx

(φ1 (x)) = V
φ2
Mx

(φ2 (x)) is ruled out by the genericity assumption).33 Intuitively g

picks the equilibrium (left or right) that agent Mx prefers.

Let us prove that g (a) = 2 and g (b) = 1. Indeed, suppose that g (a) = 1; since a < m,

33 In particular, the auxiliary result implies that for all iterations k ≥ 1, φk1 (x) < φk2 (x). Then V
φ1
Mx
(φ1 (x)) =

V
φ2
Mx
(φ2 (x)) would imply that V

φ
Mx
(φ1 (x)) = V φMx

(φ2 (x)) for φ with the following properties: φ (y) = φ1 (y) if
y < x, φ (y) = φ2 (y) if y > x, and φ (x) = x. But this is ruled out.

45



we must have φ1 (a) ≤ a < φ2 (a) (with equality if a = 1 and strict inequality otherwise).

Consider two cases. If a > 1, then for x < a, φ1 (x) = φ2 (x), and since φ1 (a) < a, then

V
φ1
Ma

(φ1 (a)) = V
φ2
Ma

(φ1 (a)). But g (a) = 1 would imply that V φ1
Ma

(φ1 (a)) > V
φ2
Ma

(φ2 (a)), and

thus V φ2
Ma

(φ1 (a)) > V
φ2
Ma

(φ2 (a)), which contradicts that φ2 is MVE. If a = 1, then g (a) = 1

would imply that V φ1
M1

(1) > V
φ2
M1

(φ2 (1)). But φ1 (1) = 1, which means
uM1

(1)

1−β > V
φ2
M1

(φ2 (1)),

thus uM1 (1)+βV
φ2
M1

(φ2 (1)) > V
φ2
M1

(φ2 (1)). The left-hand side equals V φ2
M1

(1), and thus we have

V
φ2
M1

(1) > V
φ2
M1

(φ2 (1)). This contradicts that φ2 is an MVE, thus proving that g (a) = 2. We

can similarly prove that g (b) = 1.

Clearly, there must be two states s, s+ 1 ∈ Z such that g (s) = 2 and g (s+ 1) = 1. For such

s, let us construct mapping φ as follows:

φ (x) =

{
φ1 (x) if x ≤ s
φ2 (x) if x > s

;

then φ (s) ≤ s < φ2 (s) (the first inequality is strict unless s = 1) and φ (s+ 1) ≥

s + 1 > φ1 (s+ 1) (the first inequality is strict unless s + 1 = m), which implies, in par-

ticular, that φ is monotone. Now, g (s) = 2 implies that V φ2
Ms

(φ2 (s)) > V
φ1
Ms

(φ1 (s)). But

V
φ2
Ms

(φ2 (s)) = V φ
Ms

(φ2 (s)) and V φ1
Ms

(φ1 (s)) = V φ
Ms

(φ1 (s)), and thus V φ
Ms

(φ2 (s)) > V φ
Ms

(φ (s))

(note also that s+ 1 ≤ φ2 (s) ≤ φ2 (s+ 1)). Similarly, g (s+ 1) = 1 implies V φ
Ms+1

(φ1 (s+ 1)) >

V φ
Ms+1

(φ (s+ 1)). But this contradicts Lemma 4 for mapping φ (since φ2 (s) > s and

φ1 (s+ 1) < s+ 1). This contradiction completes the proof.

Part 2. If for some x, φ1 (x) < x < φ2 (x) or vice versa, then for all i ∈ Mx, there must

be both a state x1 < x and a state x2 > x such that ui (x1) > ui (x) and ui (x2) > ui (x),

which contradicts the assumption in this case. Since for 1 < x < m, φ (x) 6= x, we get that

φ1 (x) = φ2 (x) for such x. Let us prove that φ1 (1) = φ2 (1). If this is not the case, then

φ1 (1) = 1 and φ2 (1) = 2 (or vice versa). If m = 2, then monotonicity implies φ2 (2) = 2, and

if m > 2, then, as proved earlier, we must have φ2 (x) = x+ 1 for 1 < x < m and φ2 (m) = m.

In both cases, we have φ1 (x) = φ2 (x) > 1 for 1 < x ≤ m. Hence, V φ1
i (2) = V

φ2
i (2) for all

i ∈ N . Since φ1 is MVE, we must have ui (1) / (1− β) ≥ V
φ1
i (2) for i ∈ M1, and since φ2 is

MVE, we must have V φ2
i (2) ≥ ui (1) / (1− β). This is only possible if V φ1

i (2) = ui (1) / (1− β),

which is equivalent to V φ1
i (2) = V

φ1
i (1). However, if parameter values are generic according to

the definition above, this cannot be true, and this proves that φ1 (1) = φ2 (1). We can likewise

prove that φ1 (m) = φ2 (m), thus establishing uniqueness. �

Proof of Theorem 3. The existence is proved in the text. Since, on equilibrium path,
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there is only a finite number of shocks, from some period t on the environment will be the same,

say Ex. Since φEx is monotone, the sequence {st} has a limit by Theorem 1. The fact that this

limit may depend on the sequence of shock realizations is shown by Example B2. �

Proof of Theorem 4. Part 1. Without loss of generality, suppose that h is the minimal

number for which two monotone MVE φ = {φE}E∈E and φ′ =
{
φ′E
}
E∈E exist. For generic

parameter values, if we take Ẽ =
{
E2, . . . , Eh

}
with the same environments E2, . . . , Eh and the

same transition probabilities, we will have a unique monotone MVE φ̃ = {φE}E∈E ′ =
{
φ′E
}
E∈E ′

by assumption. Now, with the help of transformation used in Subection 3.2 in the proof of

Theorem 3 we get that φE1 and φ
′
E1 must be MVE in a certain (stationary) environment Ẽ.

However, by Theorem 2 such MVE is unique, which leads to a contradiction.

Part 2. The proof is similar to that of Part 1. The only step is that we need to verify that

we can apply Part 2 of Theorem 2 to the (stationary) environment Ẽ. In general, this will not

be the case. However, it is easy to notice (by examining the proof of Part 2 of Theorem 2) that

instead of single-peakedness, we could require a weaker condition: that for each s ∈ S there is

i ∈Ms such that there do not exist x < s and y > s such that ui (x) ≥ ui (s) and ui (y) ≥ ui (s).

We can now prove that if {ui (s)}s∈Si∈N satisfy this property and φ is MVE, then
{
V φ
i (s)

}s∈S
i∈N

also does. Indeed, suppose, to obtain a contradiction, that for some s ∈ S, for all i ∈ Ms there

are xi < s and yi > s such that V φ
i (xi) ≥ V φ

i (s) and V φ
i (yi) ≥ V φ

i (s); without loss of generality,

we may assume that xi and yi minimize |xi − s| and |yi − s| among such xi and yi.

Consider the case φ (s) > s. This implies that for all i ∈ Ms, there is a > s such that

ui (a) > ui (s), and therefore for all i ∈Ms and all a < s, ui (z) < ui (s). Moreover, for all i ∈Ms,

ui (z) < V φ
i (s) / (1− β). Take j = maxMs, and let z = xj . We cannot have φ (z) ≤ z, because

then V φ
j (φ (z)) ≥ V φ

j (s) would be impossible. Thus, φ (z) > z, and in this case we must have

φ (z) > s, To see this, notice that V φ
j (z) = uj (z)+βV φ

j (φ (z)). If φ (z) < s, then V φ
j (z) ≥ V φ

j (s)

and uj (z) < V φ
i (s) / (1− β), implying V φ

j (φ (z)) > V φ
j (s) and thus contradicting the choice

of z = xj . If φ (z) = s, then V φ
j (z) = uj (z) + βV φ

j (φ (z)) contradicts V φ
j (z) ≥ V φ

j (s) and

uj (z) < V φ
i (s) / (1− β). Consequently, φ (z) > s. Monotonicity of φ implies s < φ (z) ≤ φ (s).

Now, V φ
j (z) ≥ V φ

j (s) and uj (z) < uj (s) implies V φ
j (φ (z)) > V φ

j (φ (s)) (and in particular,

φ (z) < φ (s)). Since j = maxMs, we have V φ (φ (z)) >s V
φ (φ (s)). Since s < φ (z) < φ (s),

φ (z) ∈ Fs, and therefore a deviation in s from φ (s) to φ (z) is feasible and profitable. This

contradicts that φ is a MVE. We would get a similar contradiction if we assumed that φ (s) < s.

Finally, assume φ (s) = s. Then take any i ∈ Ms, and suppose, without loss of generality,
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that for any a < s, ui (a) < ui (s). Then, since for all such a, φk (s) ≤ s for all k ≥ 1, we must

have V φ
i (a) < V φ

i (s), which contradicts the assertion. This proves the auxiliary result.

We have thus proved that under the assumptions of the theorem, the environment Ẽ con-

structed in the proof of 3 satisfies the requirements Part 2 of Theorem 2. The rest of the proof

follows immediately. �

Proof of Theorem 5. Part 1. It suffi ces to prove this result for the stationary case. For

each s ∈ S take any protocol such that if φ (s) 6= s, then θs (|Fs| − 1) = φ (s) (i.e., the desired

transition is the last one to be considered). We claim that there is a strategy profile σ such that

if for state s, φ (s) = s, then no alternative is accepted, and if φ (s) 6= s, then no alternative is

accepted until the last stage, and in this last stage, the alternative φ (s), is accepted.

Indeed, under such a profile, the continuation strategies are given by (4). To show that

such an outcome is possible in equilibrium, consider first periods where φ (s) 6= s. Consider the

subgame reached if no alternatives were accepted before the last one. Since by property 3 of

Definition 3, V φ (φ (s)) ≥s V φ (s), it is a best response for players to accept φ (s). Let us now

show, by backward induction, that if stage k, 1 ≤ k ≤ |Fs|−1 is reached without any alternatives

accepted, then there is an equilibrium where φ (s) is accepted in the last stage. The base was

just proved. The induction step follows from the following: if at stage k, alternative y = θs (k)

is under consideration, then accepting it yields a vector of payoffs V φ (y), and rejecting it yields,

by induction, V φ (φ (s)). Since by property 2 of Definition 3, V φ (y) ≯s V φ (φ (s)), it is a best

response to reject the alternative y. Consequently, φ (s) will be accepted by induction. This

proves the induction step, and therefore φ (s) is the outcome in a period which started with

s. Now consider a period where φ (s) = s. By backward induction, we can prove that there

is an equilibrium where no proposal is accepted. Indeed, the last proposal θs (|Fs| − 1) may be

rejected, because V φ (θs (|Fs| − 1)) ≯s V φ (s) by property 2 of Definition 3. Going backward, if

for some stage k, s is the outcome once θs (k) was rejected, suffi ciently many players may reject

θs (k), because V φ (θs (k)) ≯s V φ (s). This proves that in periods where φ (s) = s, it is possible

to have an equilibrium where no proposal is accepted. Combining the equilibrium strategies

for different initial s in the beginning of the period, we get a MPE which induces transition

mappings φ (s).

Part 2. If the transition mapping is monotone, then continuation utilities
{
V φ
E,i (s)

}s∈S
i∈N

={
V σ
E,i (s)

}s∈S
i∈N

satisfy increasing differences for any E ∈ E by Lemma 2. Again, the proof
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that φ is MVE reduces to the stationary case. For each state s, we consider the set Js ⊂

{1, . . . , |Fs| − 1} of stages k where the alternative under consideration, θs (k), is accepted if this

stage is reached. Naturally, φ (s) = s if and only if Js = ∅, and if Js 6= ∅, then φ (s) =

θs (min Js). Moreover, one can easily prove by induction that for any j, k ∈ Js such that j ≤ k,

V φ (θs (j)) ≥s V φ (θs (k)) (this follows from transitivity of ≥s established in Lemma 1), and thus

for any j ∈ Js, V φ (θs (j)) ≥s V φ (s).

Take any s ∈ S. Property 1 of Definition 3 holds trivially, because only states in Fs are

considered as alternatives and may be accepted. Let us show that Property 2 holds. First,

consider the case φ (s) = s. Suppose, to obtain a contradiction, that for some y ∈ Fs, V φ (y) >s

V φ (s). Suppose that this y is considered at stage k. But then, if stage k is reached, a winning

coalition of players must accept y, because rejecting it leads to s. Then k ∈ Js, contradicting

Js = ∅ for such s. Second, consider the case φ (s) 6= s. Again, suppose that for some y ∈ Fs,

V φ (y) >s V
φ (φ (s)); notice that y 6= s, because V φ (φ (s)) = V φ (θs (min Js)) ≥s V φ (s). Let

k be the stage where y is considered. If k < min Js, so y is considered before φ (s), then a

winning coalition must accept y, which implies k ∈ Js, contradicting k < min Js. If, on the

other hand, k > min Js, then notice that k /∈ Js (otherwise, V φ (y) >s V
φ (φ (s)) is impossible).

If k > max Js, then we have V φ (y) >s V
φ (φ (s)) = V φ (θs (min Js)) ≥s V φ (s), which means

that this proposal must be accepted, so k ∈ Js, a contradiction. If k < max Js, then we can take

l = min {Js ∩ [k + 1, |Fs| − 1]}. Since V φ (y) >s V
φ (φ (s)) = V φ (θs (min Js)) ≥s V φ (θs (l)), it

must again be that y is accepted, so k ∈ Js, again a contradiction. In all cases, the assertion

that such y exists leads to a contradiction, which proves that Property 2 holds.

Finally, we show that Property 3 of Definition 3 holds. This is trivial if φ (s) = s. Otherwise,

we already proved that for all j ∈ Js, V φ (θs (j)) ≥s V φ (s); in particular, this is true for

j = min Js. Consequently, V φ (φ (s)) ≥s V φ (s). This completes the proof that φ is a MVE. �

Proof of Theorem 6. Suppose, to obtain a contradiction, that φ̃Ẽ1 (x) < x. Then φE1 |S′

and φ̃Ẽ1 |S′ are mappings from S′ to S′ such that both are MVE on the restricted environment

E|S′ , which is identical to Ẽ|S′ . Moreover, these MVE are different, as φE1 (x) = x > φ̃Ẽ1 (x).

However, this violates uniqueness, completing the proof. �

Proof of Corollary 1. Consider an alternative set of environments E ′ =
{
E0, E2

}
, where

E0 coincides with E2 on S, but the transition probabilities are the same as in E . Clearly, φ′

defined by φ′E0 = φ′E2 = φE2 is a MVE in E ′. Let us now consider environments Ẽ0 and Ẽ1
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obtained from E ′ and E , respectively, using the procedure from Section 3.2. Suppose, to obtain a

contradiction, that φE2 (x) < x, then environments Ẽ0 and Ẽ1 coincide on [1, x] by construction.

Theorem 6 then implies that, since φE1 (x) = x, then φ′E0 (x) ≥ x (since φ′E0 and φE1 are the

unique MVE in Ẽ0 and Ẽ1, respectively). But by definition of φ′, x ≤ φ′E0 (x) = φE2 (x) < x, a

contradiction. This contradiction completes the proof. �

Proof of Theorem 7. Take generic parameter values (see the proof of Theorem 2).

Part 1. It suffi ces to prove this result in stationary environments. By Theorem 8, there

are no cycles, and thus for any x ∈ S, the sequence x, φ (x) , φ2 (x) , . . . has a limit. Suppose,

to obtain a contradiction, that MVE φ is non-monotone, which means there are states x, y ∈ S

such that x < y and φ (x) > φ (y). Without loss of generality we can assume that x and y

are such that the set Z =
{
x, φ (x) , φ2 (x) , . . . ; y, φ (y) , φ2 (y) , . . .

}
has fewest different states.

In that case, mapping φ is monotone on the set Z \ {x, y}, which implies that {V s
i }

s∈Z\{x,y}
i∈N

satisfies increasing differences. By property 2 of Definition 3 applied to state x, we get

VmaxMx (φ (x)) ≥ VmaxMx (φ (y)) , (A24)

and if we apply it to state y,

VminMy (φ (y)) ≥ VminMy (φ (x)) . (A25)

Since maxMx ≤ minMy by assumption, (A24) implies

VminMy (φ (x)) ≥ VminMy (φ (y)) .

For generic parameter values, this inequality is strict, and thus contradicts (A25).

Part 2. Again, consider stationary environments only. If φ is non-monotone, then for some

x, y ∈ S we have x < y and φ (x) > φ (y), which in this case implies φ (x) = y = x + 1 and

φ (y) = x. However, if parameters are generic, this contradicts Theorem 8. This contradiction

completes the proof. �

Proof of Theorem 8. It suffi ces to prove that within any stationary environment E, a path

that starts with any state s is monotone. We first rule out cycles, where for some x, φ (x) 6= x,

but φk (x) = x for some k > 1. Without loss of generality, let k be the minimal one for which

this is true, and x be the highest element in the cycle. In this case, the we have, for any i ∈ N ,

Vi (x)− Vi (φ (x)) = ui (x) + βVi (φ (x))− Vi (φ (x)) = ui (x)− (1− β)Vi (φ (x))

=
∑k−1

j=1

(1− β)βj−1

1− βk
(
ui (x)− ui

(
φj (x)

))
,
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which is increasing in i, since each term is increasing in i as x > φj (x) for j = 1, . . . , k− 1. This

means that {Vi (s)}s∈{φ(x),x}
i∈N satisfies the increasing differences. Because of that, Property 3 of

Definition 3, when applied to state x, implies that Vi (φ (x)) ≥ Vi (x) for all i ∈ Mx. However,

if we take y = φk−1 (x) (so φ (y) = x), then Property 2 of Definition 3 would imply that

Vi (x) ≥ Vi (φ (x)) for at least one i ∈My. Increasing differences implies that Vi (x) ≥ Vi (φ (x))

for at least one i ∈Mx, and therefore for such i, Vi (x) = Vi (φ (x)). This cannot hold for generic

parameter values; this contradictions proves that cycles are ruled out.

Now, to prove that any path is monotone, assume the opposite, and take x that generates

the shortest non-monotone path (i.e., such that the sequence x, φ (x) , φ2 (x) , . . . has the fewest

different states). In that case, either φ (x) > x, but φ2 (x) < φ (x) or vice versa; without loss

of generality consider the former case. Denote y = φ (x); then the sequence y, φ (y) , φ2 (y) , . . .

is monotone by construction of x. Consequently, {Vi (s)}s∈{y,φ(y),φ2(y),...}
i∈N satisfies increasing

differences. By Property 3 of Definition 3 applied to state y, for all i ∈My, Vi (φ (y)) ≥ Vi (y); for

generic parameter values, this inequality is strict. Since φ (y) < y, this is true for i ∈ [1,maxMy];

now, x < y implies maxMx ≤ maxMy, and therefore, for all i ∈ Mx, Vi (φ (y)) > Vi (y).

However, this contradicts Property 2 of Definition 3, applied to state x. This contradiction

completes the proof. �
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Appendix B – For Online Publication

B1 Additional Results

Additional comparative statics

In the next two Theorems, parameters are assumed to be generic (see the proof of Theorem 2).

Theorem B1 (Monotonicity everywhere) Suppose that E =
{
E1, E2

}
, 0 < π

(
E1, E2

)
< 1,

π
(
E2, E1

)
= 0, and E1 and E2 coincide on S′ = [1, s] ⊂ S. Then there exists β0 > 0 such that

if β < β0, then in the unique MVE φ, if the initial state is s0 ∈ S′ such that φE1 (s0) ≥ s0, then

the entire path s0, s1, s2, . . . (induced both under environment E1 and after the switch to E2) is

monotone. Moreover, if the shock arrives at time t, then for all τ ≥ t, sτ ≥ s̃τ , where s̃τ is the

hypothetical path if the shock never arrives.

Proof. Let us first prove this result for the case where each QMV is a singleton. Both before

and after the shock, the mapping that would map any state x to a state which maximizes the

stage payoff uMx (y) would be a monotone MVE for β < β0. By uniqueness, φE1 and φE2 would

be these mappings under E1 and E2, respectively. Now it is clear that if the shock arrives at

period t, and the state at the time of shock is x = st−1, then φE2 (x) must be either the same

as φE1 (x) or must satisfy φE2 (x) > s. In either case, we get a monotone sequence after the

shock. Moreover, the sequence is the same if sτ ≤ s, and if sτ > s, then we have sτ > s ≥ s̃τ

automatically.

The general case may be proved by observing that a mapping that maps each state x to

an alternative which maximizes by uminMx (y) among the states such that ui (y) ≥ ui (x) for

all i ∈ Mx is a monotone MVE. Such mapping is generically unique, and by the assumption of

uniqueness it coincides with the mapping φE1 if the environment is E
1 and it coincides with φE2

if the environment is E2. The remainder of the proof is analogous.

Theorem B2 (Additional veto players) Suppose that stationary environments E1 and E2

have the same payoffs, uE1,i (x) = uE2,i (x), that the same transitions are feasible (FE1 = FE2)

and that ME1,x = ME2,x for x ∈ [1, s] and minME1,x = minME2,x for x ∈ [s+ 1,m]. Suppose

also that the MVE φ1 in E1 and MVE φ2 in E2 are unique on any subset of [1, s]. Then

φ1 (x) = φ2 (x) for any x ∈ [1, s].

Proof. It is suffi cient, by transitivity, to prove this Theorem for the case where maxME1,x 6=

maxME2,x for only one state x ∈ [s+ 1,m]. Moreover, without loss of generality, we can assume
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that maxME1,x < maxME2,x. Notice that if φ1 (x) ≥ x, then φ1 is MVE in environment E
2,

and by uniqueness must coincide with φ2.

Consider the remaining case φ1 (x) < x; it implies φ1 (x− 1) ≤ x−1. Consequently, φ1|[1,x−1]

is MVE under either environment restricted on [1, x− 1] (they coincide on this interval). Sup-

pose, to obtain a contradiction, that φ1|[1,s] 6= φ2|[1,s]; since x > s, we have φ1|[1,x−1] 6= φ2|[1,x−1].

We must then have φ2 (x− 1) > x−1 (otherwise there would be two MVE φ1|[1,x−1] and φ2|[1,x−1]

on [1, x− 1], and therefore φ2 (x) ≥ x. Consequently, φ2|[x,m] is MVE on [x,m] under environ-

ment E2 restricted on [x,m]. Let us prove that φ2|[x,m] is MVE on [x,m] under environment

E1 restricted on [x,m] as well. Indeed, if it were not the case, then there must be a monotone

deviation, as fewer QMVs (in state x) imply that only Property 2 of Definition 3 may be vio-

lated. Since under E1, state x has fewer QMVs than under E2, it is only possible if φ2 (x) > x,

in which case φ2 (x+ 1) ≥ x+1. Then φ2|[x+1,m] would be MVE on [x+ 1,m], and by Lemma 5

we could get MVE φ̃2 on [x,m] under environment E1. This MVE φ̃2 would be MVE on [x,m]

under environment E2. But then under environment E2 we have two MVE, φ̃2 and φ2|[x,m] on

[x,m], which is impossible.

We have thus shown that φ1|[1,x−1] is MVE on [1, x− 1] under both E1 and E2, and the

same is true for φ2|[x,m] on [x,m]. Take mapping φ given by

φ (y) =

{
φ1 (y) if y < x
φ2 (y) if y > x

.

Since φ1|[1,x−1] 6= φ2|[1,x−1] and φ1|[x,m] 6= φ2|[x,m] (φ1 (x− 1) ≤ x − 1, φ2 (x− 1) > x − 1,

φ1 (x) < x, φ2 (x) ≥ x), φ is not MVE in E1 nor it is in E2. By Lemma 4, in both E1 and

E2 only one type of monotone deviation (at x − 1 to some z ∈ [x, φ2 (x)] or at x to some

z ∈ [φ1 (x− 1) , x]) is possible. But the payoffs under the first deviation are the same under

both E1 and E2; hence, in both environments it is the same type of deviation.

Suppose that it is the former deviation, at x − 1 to some z ∈ [x, φ2 (x)]. Consider the

following restriction on feasible transitions:

F̃ (a) =

{
F (a) if a ≥ x;

F (a) ∩ [1, x− 1] if a < x;

denote the resulting environments by E1 and E2. This makes the deviation impossible, and thus

φ is MVE in E1 (in E2 as well). However, φ1 is also MVE in E
1, as it is not affected by the

change is feasibility of transitions, and this contradicts uniqueness. Finally, suppose that the

deviation is at x to some z ∈ [φ1 (x− 1) , x]. Then consider the following restriction on feasible
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transitions:

F̄ (a) =

{
F (a) if a < x;

F (a) ∩ [x,m] if a ≥ x;

denote the resulting environments by Ē1 and Ē2. This makes the deviation impossible, and thus

φ is MVE in E2. However, φ2 is also MVE in E
1, as it is not affected by the change in feasibility.

Again, this contradicts uniqueness, which completes the proof.

Extension: Continuous spaces

In this subsection, we show how our results can be extended to economies with a continuum of

states and/or a continuum of players.

Suppose that the set of states is S = [sl, sh], and the set of players is given by N = [il, ih].

(The construction and reasoning below are easily extendable to the case where the are a finite

number of players but a continuum of states, or vice versa.) We assume that each player has a

utility function ui (s) : S → R, which is continuous as a function of (i, s) ∈ N × S and satisfies

increasing differences: for all i > j, x > y,

ui (x)− ui (y) ≥ uj (x)− uj (y) .

The mapping F , which describes feasible transitions, is assumed to be upper-hemicontinuous

on S and to satisfy Assumption 5. Finally, for each state s there is a set of winning coalitions

Ws, which are assumed to satisfy Assumption 3. As before, for each state s, we have a non-

empty set of QMVs Ms (which may nevertheless be a singleton). We make the following version

of Monotone QMV assumption: functions inf Ms and supMs are continuous and increasing

functions of s.

For simplicity, let us focus on the case without shocks and on monotone transition functions

φ : S → S (this function may be discontinuous). MVE is defined as in Definition 3. The

following result establishing the existence of MVE.

Theorem B3 (Existence in Continuous Spaces) With a continuum of states and/or play-

ers, there exists a MVE φ. Moreover, take any sequence of sets of states S1 ⊂ S2 ⊂ · · · and

any sequence of players N1 ⊂ N2 ⊂ · · · such that
⋃∞
j=1 Sj is dense in S and

⋃∞
j=1Nj is dense

in N . Consider any sequence of monotone functions
{
φj : Sj → Sj

}∞
j=1

which are MVE (not

necessarily unique) in the environment

Ej =
(
N,S, β, {ui (s)}s∈Sji∈Nj , {Ws}s∈Sj , {Fj (s)}s∈Sj

)
.
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Existence of such MVE is guaranteed by Theorem 1, as all assumptions are satisfied. Then there

is a subsequence {jk}∞k=1 such that
{
φjk
}∞
k=1

converges pointwise on
⋃∞
j=1 Sj, to some MVE

φ : S → S.

Proof. Take an increasing sequence of sets of points, S1 ⊂ S2 ⊂ S3 ⊂ · · · , so that
∞⋃
i=1

Si is dense.

For each Si, take MVE φi. We know that φi is a monotone function on Si; let us complement

it to a monotone (not necessarily continuous) function on S which we denote by φ̃i for each i.

Since φ̃i are monotone functions from a bounded set to a bounded set, there is a subsequence

φ̃ik which converges to some φ̃ pointwisely. (Indeed, we can pick a subsequence which converges

on S1, then a subsequence converging on S2 etc; then use a diagonal process. After it ends, the

set of points where convergence was not achieved is at most countable, so we can repeat the

diagonal procedure.) To show that φ̃ is a MVE, suppose not, then there are two points x and

y such that y is preferred to φ̃ (x) by all members of Mx. Here, we need to apply a continuity

argument and say that it means that the same is true for some points in some Si. But this

would yield a contradiction.

Proofs of Theorem 9 and Propositions 1-8

Proof of Theorem 9. For each i ≥ 1, consider a truncated set of environments E i ={
E1, E2, . . . , Ei

}
and transition mappings such that for all 1 ≤ j, k ≤ i,

πE
i
(
Ej , Ek

)
=


0 if j > k

π
(
Ej , Ek

)
if j < k

π
(
Ej , Ek

)
+
∑∞

l=i+1
π
(
Ej , El

)
if j = k

(in other words, we replace transitions to high-numbered environments with staying at the same

environment; in particular, Ei is a static environment). In this case, for E i, Theorem 3 is

applicable, and there is a MVE φE
i

=
{
φE

i

Ej

}
1≤j≤i

.

Take the first environment E1 and consider the sequence
{
φE

i

E1

}∞
i=1
. Since the number of

mappings φ : S → S is finite, there will be a mapping φE1 which equals φ
Ei
E1 for an infinite

number of i; let the set of such i be called Z1. Now, take the second environment E2 and

consider the sequence
{
φE

i

E2

}
i∈Z1�{1}

(we subtract the first element because φE
1

E2 is not defined).

Again, there is a mapping φE2 which equals φ
Ei
E2 for an infinite number of i ∈ Z1; let the set of

such i be called Z2 ⊂ Z1. Proceeding in a similar way, for every j > 2 we will construct φEj that
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equals φE
i

Ej for an infinite number of i ∈ Zj−1. We claim that the set of mappings φ = {φEj}∞j=1

constructed in this way is MVE.

Suppose that it is not; then Definition 3 is violated for some j. Property 1 (feasi-

bility) holds true by construction. Suppose Property (core) is violated. Then for some

x, y ∈ S, we have y ∈ FEj (x) and Y ≡
{
i ∈ N : V φ

Ej ,i
(y) > V φ

Ej ,i
(φEj (x))

}
∈ WEj ,x. Let

ε = mini∈Y
(
V φ
Ej ,i

(y)− V φ
Ej ,i

(φEj (x))
)
> 0. Now take k ∈ N so large that 4M βk−j

1−β < ε.

Now, consider a truncated environment E l, where l ∈ Zk. By construction, in E l, there is

MVE φE
l

=
{
φE

l

Er

}
1≤r≤l

which coincides with φ for r ≤ k: φElEr = φEr for such r. By the choice

of k, we must have that for all i ∈ Y , the continuation payoffs of player i under φEl satisfy the

same inequality: V φE
l

Ej ,i
(y) > V φE

l

Ej ,i
(φEj (x)). But this violates the definition of MVE for φE

l
in

E l, which is a contradiction.

Finally, if Property 3 (status quo) were violated, we would get a similar contradiction. This

completes the proof. �

Proof of Proposition 1. Part 1. We start by proving that there exists a unique monotone

MVE. To show this, we need to establish that all requirements for existence and generic unique-

ness are satisfied.

(Increasing differences) Consider player i and take two states x, y with x > y. The policy in

state x is bMx and in state y, it is bMy . Since Mx ≥My and b is increasing in the identity of the

player, we have bMx ≥ bMy . Take the difference

ui (x)− ui (y) = − (bMx − bi)
2 −

∑
j /∈Hx

γjCj −
(
−
(
bMy − bi

)2 −∑
j /∈Hy

γjCj

)
=

(
bMx − bMy

) (
2bi − bMx − bMy

)
−
∑

j /∈Hx
γjCj +

∑
j /∈Hy

γjCj .

This only depends on i through bi, which is increasing in bi. Hence, increasing differences is

satisfied.

(Monotone QMV) The QMV in state s is Ms. If s ≥ 0, then an increase in s implies that

players on the right get more power, and s ≤ 0, then a decrease in s implies that players on the

left get more power.

(Feasibility) All transitions are feasible, and thus the assumption holds trivially.

(QMV are singletons) This holds generically, when no two disjoint sets of players have the

same power.

This establishes that there is a unique monotone MVE. To show that φ (0) = 0, suppose not.

Without loss of generality, φ (0) > 0. Then if s1 = 0, monotonicity implies that st > 0 for all
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t > 1. But M0 = 0, thus bM0 = b0 and uM0 (0) = 0, while uM0 (s) < 0 for s 6= 0. This shows

that if φ (0) > 0, there is a profitable deviation to 0. This contradiction completes the proof.

Part 2. Consider the case s < 0 (the case s > 0 is considered similarly). Since φ (0) = 0,

monotonicity implies that φ (s) ≤ 0. To show that φ (s) ≥ s, suppose, to obtain a contradiction,

that φ (s) < s. Then, starting from the initial state s1 = s, the equilibrium path will involve

st < s for all t > 1. Notice, however, that for the QMV Ms, uMs (s) = −
∑

j /∈Hs γjCj , and

for x < s, uMs (x) = − (bMx − bMs) −
∑

j /∈Hx γjCj < uMs (s), as Hx is a strict superset of Hs.

Again, there is a profitable deviation, which completes the proof.

Part 3. Consider the mapping φ such that φ (s) = 0 for all s. Under this mapping,

continuation utilities are given by

V φ
i (s) = − (bMs − bi)

2 − k
∑

j /∈Hs
γjC

∗
j −

β

1− β (b0 − bi)2 .

Now, the two conditions required to hold for φ to be an MVE simplify to:

for any s, x : V φ
Ms

(0) ≥ V φ
Ms

(x) ;

for any s : V φ
Ms

(0) ≥ V φ
Ms

(s) ;

clearly, the second line of inequalities is a subset of the first. This simplifies to

for any s, x: k
∑

j /∈Hx
γjC

∗
j ≥ (bMs)

2 − (bMx − bMs)
2 .

Clearly, as k increases, the number of equations that are true weakly increases. Furthermore,

for k high enough, the left-hand side becomes arbitrarily large for all x except for x = 0 where it

remains zero, but for x = 0, bMx = 0 and thus the right-hand side is zero as well. Finally, if k is

small enough, the left-hand side is arbitrarily close to 0 for all s and x, and thus the inequality

will be violated, e.g., for s = x = 1. This proves that there is a unique positive k∗ with the

required property. �

Proof of Proposition 2. Part 1. The equilibrium exists and is unique because the

required properties hold in each of the environments, and thus Theorems 3 and 4 are applicable.

Let φEf be the mapping after radicals have left. Since the environment E
f allows for no fur-

ther stochastic shocks, φEf coincides with φ from Proposition 1 (i.e., if radicals are impossible).

Now take any radical environment Rz (so states x ≤ z are controlled by radicals). Notice that

φRz (s) is the same for all s ≤ z (otherwise, setting φRz (s) = φRz (z) for all s < z would yield

another MVE, thus violating uniqueness). Consider two situations: z < 0 and z ≥ 0.
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Suppose first that z < 0. Then φRz (0) = 0 (similar to the proof of Part 1 of Proposition

1), and thus by monotonicity φRz (s) ∈ [−l − r, 0]. For any x such that z < x < 0, φRz (x) ≥ x

(again, similar to that proof). Notice that as b−l varies, the mapping φRz |[z+1,l+r] does not

change. Indeed, equilibrium paths starting from x ≥ z + 1 remain within that range, and thus

continuation utilities of Mx for any x ≥ z+ 1 do not depend on b−l; moreover, a deviation from

x ≥ z+ 1 to some y ≤ z cannot be profitable for obvious reasons. The state φRz (z) is such that

it maximizes the continuation utility of the radical −l among the following alternaties: moving

to some state y ≤ z, staying there until transition to environment Ef and moving according to

φEf , and moving to some state y > z, moving according to φRz until the transition to E
f and

according to φEf after the transition. Notice that as b−l decreases, the continuation utilities of

the radical −l under all these options, except of moving to state y = −l − r, strictly decrease,

while the payoff of that option remains unchanged (and equal to − 1
1−βk

∑
j>−l γjC

∗
j ). Hence, a

decrease in b−l makes this transition more likely starting from state z, and thus for all s ≤ z.

Now suppose that z ≥ 0. Trivially, we must have φRz (z) ≤ 0. In this case, φRz |[z+1,l+r]

may depend on b−l, moving to y ∈ [z + 1, l + r] is suboptimal for the radical anyway. So in this

case, the equilibrium φRz (z) maximizes the radical’s continuation utility among the options of

moving to some y ≤ 0, staying there until transition to Ef , and then moving according to φEf .

Again, only for y = −l− r the continuation payoff remains unchanged as b−l decreases, and for

all other options it decreases. Hence, in this case, too, a lower b−l makes φRz (z) = −l− r more

likely. Moreover, since the equilibrium path starting from any y ≤ 0 will only feature states

s ≤ 0, and for all possible y ≤ 0, the path for lower y is first-order stochastically dominated by

the path for higher y, an increase in k makes φRz (z) = −l − r less likely.

It remains to prove that an increase in z decreases the chance of transition to −l− r for any

given s ≤ z. This is equivalent to saying that a higher z decreases the chance that φRz (−l − r) =

−l−r. Suppose that z increases by one. If z ≥ 0 (thus increasing to z+1 ≥ 1), then φRz (−l − r)

does not change as moving to y ≥ 1 was dominated anyway. If z < 0 (thus increasing to

z + 1 ≤ 0), then this increase does not change φRz |[z+2,l+r], and thus the only change is the

option to stay in z + 1 as long as the shock leading to Ef does not arrive. This makes staying

in −l − r weakly less attractive for the radical, and for some parameter values may make him

switch.

Part 2. Suppose, to obtain a contradiction, that for some s ≤ 0, φE1 (s) < s. Without loss of

generality we may assume that this is the lowest such s, meaning φE1 (s) is φE1-stable. Consider
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a deviation at s from φE1 (s) to s. This deviation has the following effect on continuation

utility. First, in the period of deviation, the QMV Ms gets a higher state payoff. Second, the

continuation utilities if a transition to Rz for some z takes place immediately after that may

differ (if there is no shock, then both paths will converge at φE1 (s) thus yielding the same

continuation utilities). Now consider two cases: if z ≥ s, then the radicals are in power in both

s and φE1 (s). As showed in the proof of Part 1, the radicals will transit to the same state, thus

resulting in the same path and continuation utilities. If, however, z < s, then the transition in

Rz will be chosen by Ms if he stayed in s, hence, this transition will maximize his continuation

payoff under Rz, and this need not be true if he moved to φE1 (s) (regardless of whether or

not radicals rule in this state). In all cases, the continuation utility after the current period is

weakly higher if he stayed in s than if he moved to φE1 (s) < s, and taking into account the first

effect, we have a strictly profitable deviation. This contradicts the definition of MVE, which

completes the proof. �

Proof of Proposition 3. Part 1. Suppose, to obtain a contradiction, that φE1 (s) ≤ x for

all x ≥ 0. By Part 2 of Proposition 2, φE1 (s) ≥ s for s ≤ 0, which now implies φE1 (0) = 0.

Part 2. As in Theorem 3, we may treat the environment E1 as static, with Wi (s) as

quasi-utilities and β̃ = β (1− µ) as the discount factor. Assume, to obtain a contradiction,

that for all x ≥ 0, φE1 (s) ≤ s. The payoff from staying in 0 for player M0 = 0 is V0 (0) =

Ũ0(0)

1−β̃ . By definition of MVE, VMs (φE1 (s)) ≥ VMs (s), and since continuation utilities satisfy

increasing differences, φE1 (s) ≤ s, and M0 ≤ Ms, it must be that V0 (φE1 (s)) ≥ V0 (s). Since

V0 (s) = Ũ0 (s) + β̃V0 (φE1 (s)), we have V0 (φE1 (s)) ≥ Ũ0(s)

1−β̃ . Consequently, it must be that

V0 (φE1 (s)) > V0 (0). This is impossible if φE1 (s) = 0, and it suggests a profitable deviation at

0 from 0 to s otherwise. This contradiction proves that such x exists.

Part 3. Suppose, to obtain a contradiction, that for some s > 0, φE1 (s) > s. With-

out loss of generality, assume that φE1 (s) is itself φE1-stable. By definition of MVE,

VMs (φE1 (s)) ≥ VMs (s). This is equivalent to
ŨMs(φE1 (s))

1−β̃ ≥ ŨMs (s) +
β̃ŨMs(φE1 (s))

1−β̃ , thus

implying ŨMs (φE1 (s)) ≥ ŨMs (s). Setting y = φE1 (s) and x = s, we have y > x ≥ 0 and

ŨMx (y) ≥ ŨMx (x), a contradiction. This completes the proof. �

Proof of Proposition 4. This is an immediate corollary of Theorem 6. �

Proof of Proposition 5. All our baseline assumptions hold for trivial reasons, however,

we need to verify that the increasing differences (Assumption 2) hold when one of the agents is
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group −l. Take another group x > −l; we have

us (x)− us (−l) =

{
(bx − b−l)

(
2bMs − bMx − bM−l

)
− (1− ρ)

∑
j /∈Hs γjCj if s < 0

(bx − b−l)
(
2bMs − bMx − bM−l

)
if s ≥ 0

.

But bMs is increasing in s, and
∑

j /∈Hs γjCj is decreasing while remaining positive. This implies

that us (x)− us (−l) is increasing in s, so all assumptions hold.

Take some ρ and ρ′ such that ρ > ρ′. Suppose, to obtain a contradiction, that φE1 (0) > 0,

but φ′E1 (0) = 0. Since radicals cannot come to power at state 1, we must have φE1 (1) ∈ {0, 1},

and φ′E1 (1) ∈ {0, 1}. We therefore have φE1 (0) = φE1 (1) = 1.

It is easy to check that for any radical environment Rz and for any x ≤ z, φ′Rz (x) ≤ φRz (x) ≤

0, and therefore, if in period t, the environment is Rz and the state is st = s′t ≤ z, then for

all τ ≥ t and for all realizations of shocks, we have s′τ ≤ sτ ≤ 0. From this, we have that

VRz ,0 (0) = V ′Rz ,0 (0) and VRz ,0 (1) = V ′Rz ,0 (1) whenever z < 0 (indeed, the equilibrium paths in

these cases in Rz and Ef are the same and do not involve states x < 0).

Notice also that the mapping φRz |[0,r] = φEf |[0,r] for z < 0. Denote λ∗ = µ−l−r − µ0, so λ
∗

is the probability of a shock to a radical environments other than R0.

Let us prove that φE1 (0) = 1 implies φR0 (0) = 1. Indeed, from φE1 (0) = 1, we have

ũE1,0 (1) ≥ ũE1,0 (0). By definition,

ũE1,0 (1) = u0 (1) + β
(
λ∗VEf ,0 (1) + λ0VR0,0 (1)

)
,

ũE1,0 (0) = u0 (0) + β
(
λ∗VEf ,0 (0) + λ0VR0,0 (0)

)
.

But u0 (1) < u0 (0) and, clearly, VEf ,0 (1) < 0 = VEf ,0 (0). This means VR0,0 (1) > VR0,0 (0),

implying that φR0 (0) = 1 (which in turn implies φR0 (1) = 1).

Now, notice that we have similar formulas for ũE1,0 (1) and ũE1,0 (0), and moreover,

VEf ,0 (1) = V ′
Ef ,0

(1) and VEf ,0 (0) = V ′
Ef ,0

(0). Therefore,

ũE1,0 (1)− ũ′E1,0 (1) = βλ0

(
VR0,0 (1)− V ′R0,0 (1)

)
,

ũE1,0 (0)− ũ′E1,0 (0) = βλ0

(
VR0,0 (0)− V ′R0,0 (0)

)
.

But φR0 (0) = φR0 (1) = 1 implies VR0,0 (1) = V ′R0,0 (1). On the other hand, VR0,0 (0) ≥ V ′R0,0 (0).

Together, this all implies that(
ũE1,0 (1)− ũ′E1,0 (1)

)
−
(
ũE1,0 (0)− ũ′E1,0 (0)

)
≤ 0.
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Since ũE1,0 (1) ≥ ũE1,0 (0), it must be that ũ′E1,0 (1) ≥ ũ′E1,0 (0). This means ũ′E1,M1
(1) ≥

ũ′E1,M1
(0), implying φ′E1 (1) = 1. But then ũ′E1,0 (1) ≥ ũ′E1,0 (0) is incompatible with φ′E1 (0) = 0.

This contradicts our initial assertion, which completes the proof. �

Proof of Proposition 6. First note that the notion of MVE in this environment needs to

be refined slightly since society cannot start a period in state n. Let us first define payoffs. For

E ∈
{
Eh,n−1, El,n−1, Eh,n, El,n

}
, i ∈ N and s ∈ S, uE,i (s) = Bs − (bi − bs)2 (with Bn = Bh

for Eh,n−1 and Eh,n and Bn = Bl for El,n−1 and El,n). For the initial environment E1, i ∈ N

and s ∈ S \ {n}, uE1,i (s) = ui (s) = Bs − (bi − bs)2. We do not define uE1,i (n). Given these

definitions, an MVE is again a collection of mappings φ =
(
φE1 , φh,n−1, φl,n−1, φh,n, φl,n

)
, where

φE1 is mapping S \ {n} → S and φ·,· are mappings S → S such that Definition 3 is satisfied for

continuation utilities found from (2), with the only caveat that in environment E1, if φE1 (s) = n,

then a shock (or, more precisely, one of four possible shocks) happens with probability 1 rather

than λ. Notice that the right-hand sides in (2) are well-defined even in E1 and s such that

φE1 (s) = n, precisely because VE1 (n) would enter with coeffi cient 0. In what follows, we define

environment Ẽ1 that satisfies all the assumptions and show that its MVE corresponds to MVE

in E1; this will ensure existence and (generic) uniqueness. The environments Eh,n−1, El,n−1,

Eh,n, El,n are stationary, and Theorems 1 and 2 apply (it is trivial to verify that Assumptions

2—5 are satisfied). Therefore, MVE in these environments exist and are (generically) unique.

Denote these MVE by φh,n−1, φl,n−1, φh,n, φl,n, respectively; let the continuation values of player

i in state s in these environments under these MVE be V h,n−1
i (s), V l,n−1

i (s), V h,n
i (s), V l,n

i (s),

respectively. Let

V̄i (s) = γµV h,n
i (s) + γ (1− µ)V h,n−1

i (s) + (1− γ)µV h,n
i (s) + (1− γ) (1− µ)V h,n−1

i (s) ;

in other words, V̄i (s) is the expected continuation utility if it is known that the shock (learning)

will happen in the current period, but the exact realizations of Bn and Mn are unknown yet.

Consider an alternative environment Ẽ1, which is obtained from E1 (which means, in par-

ticular, that transition probabilities to environments Eh,n−1, El,n−1, Eh,n, El,n are preserved)

by making the following definitions for state n. Assume FẼ1 (n) = {n} (i.e., no transitions are

feasible), MẼ1,n = {n} (we assume group n to make decisions on transitions, although this is

inconsequential since transitions are ruled out), and, most importantly, uẼ1,i (n) = (1− β) V̄i (n)

(so, each agent is assumed to get a per-period share of his expected payoff from moving to state

n and learning its true payoffs). The environment Ẽ1 constructed in this way satisfies all as-
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sumptions of Theorems 3 and 4, and therefore it has a (generically) unique MVE, which we

denote by φ0. (The only part that needs to be verified is Assumption 2 (increasing differences)

at the pair of states n − 1, n, which holds because for each i, V h,n−1
i (n), V l,n−1

i (n), V h,n
i (n),

V l,n
i (n) are weighted averages of ui (n− 1) and ui (n), and thus so is V̄i (n).) We argue that φ0

is a MVE in the original environment E1 (after dropping φ0 (n), which is irrelevant because of

the automatic learning).

Consider the continuation utilities under mapping φ0 in E
1 and Ẽ1; denote them Vi (s) and

Ṽi (s), respectively. For s = n, we have

Ṽi (n) =
uẼ1,i (n)

1− β = V̄i (n) ;

indeed, even though agent i gets per-period utility equal to uẼ1,i (n) only until a shock takes

place, the average continuation utility after the shock is V̄i (n) by definition of V̄i (n), and thus

this equality holds. The continuation utility Vi (n) is not well-defined, because the society cannot

start a period in state n in environment E1. Now, supoose s < n and consider two cases. If

φ0 (s) 6= n, then

Ṽi (s) = ui (s) + βγV̄i (s) + β (1− γ) Ṽi (φ0 (s)) ;

Vi (s) = ui (s) + βγV̄i (s) + β (1− γ)Vi (φ0 (s)) .

In the case φ0 (s) = n, we have

Ṽi (s) = ui (s) + βV̄i (n) ;

Vi (s) = ui (s) + βV̄i (n) .

Consequently, the vector of continuation utilities {Vi (s)}s∈S\{n}i∈N is equal to the corresponding

vector in Ẽ1, {Vi (s)}s∈S\{n}i∈N . This implies that mapping φ0 satisfies all the parts of Definition

3 in E1(as adapted above) and is therefore a MVE.

A similar argument would prove that any MVE φ′ in E1 would correspond to a MVE in

Ẽ1 if we defined φ′ (n) = n. Now, uniqueness of MVE in Ẽ1 proves uniqueness of MVE in E1,

which completes the proof. �

Proof of Proposition 7. Part 1. In this case, φh,· (n) = n and φl,· (n) = n− 1 regardless

of whether group n − 1 or n is in power in state n. In E0 (and thus Ẽ0) defined in the proof

of Proposition 6), the only two possibilities are φ0 (n− 1) = n and φ0 (n− 1) = n; at the same
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time, φ0 (n) = n. Let us suppose that φ0 (n− 1) = n and compute the continuation utilities of

group n− 1 under these mappings. We have:

Ṽn−1 (n) = EBn − (bn − bn−1)2 + β

(
γ

1

1− β

(
Bh − (bn − bn−1)2

)
+ (1− γ)

1

1− βBn−1

)
,

Ṽn−1 (n− 1) = Bn−1 + βλ

(
γ

1

1− β

(
Bh − (bn − bn−1)2

)
+ (1− γ)

1

1− βBn−1

)
+ β (1− λ)Vn−1 (n) .

Mapping φ0 is an equilibrium if and only if Ṽn−1 (n) ≥ Ṽn−1 (n− 1), which is equivalent to

(1− β (1− λ))
(
EBn − (bn − bn−1)2

)
+ (1− β (1− λ)− λ)β

(
γ

1

1− β

(
Bh − (bn − bn−1)2

)
+ (1− γ)

1

1− βBn−1

)
≥ Bn−1.

Simplifying and substituting EBn = γBh + (1− γ)Bl, we get

γ
(
Bh − (bn − bn−1)2 −Bn−1

)
≥ (1− β (1− λ)) (1− γ)

(
Bn−1 + (bn − bn−1)2 −Bl

)
;

under our assumptions, both sides are positive, and thus this is equivalent to Y ≥ 1−β (1− λ).

This means that if this inequality is satisfied, then φ0 (n− 1) = n in the equilibrium; otherwise,

we get a contradiction, in which case it must be that φ0 (n− 1) = n−1. Since 1−β (1− λ) does

not depend on µ, decreases in β and increases in λ, the result follows.

Part 2. In this case, we have φl,n−1 (n) = n − 1, whereas φh,· (n) = n and φl,n (n) = n.

Again, suppose that φ0 (n− 1) = n; then we have

Ṽn−1 (n) = EBn − (bn − bn−1)2

+β

(
γ

1

1− β

(
Bh − (bn − bn−1)2

)
+ (1− γ)µ

1

1− β

(
Bl − (bn − bn−1)2

)
+ (1− γ) (1− µ)

1

1− βBn−1

)
;

Ṽn−1 (n− 1) = Bn−1

+βλ

(
γ

1

1− β

(
Bh − (bn − bn−1)2

)
+ (1− γ)

1

1− βBn−1

)
+ β (1− λ)Vn−1 (n) .

The equilibrium condition Ṽn−1 (n) ≥ Ṽn−1 (n− 1) is equivalent to

(1− β (1− λ))

(
EBn − (bn − bn−1)2 + β (1− γ)µ

1

1− β

(
Bl − (bn − bn−1)2 −Bn−1

))
+ (1− β (1− λ)− λ)β

(
γ

1

1− β

(
Bh − (bn − bn−1)2

)
+ (1− γ)

1

1− βBn−1

)
≥ Bn−1.

Simplifying as in the proof of Part 1, we obtain that this is equivalent to

γ
(
Bh − (bn − bn−1)2 −Bn−1

)
≥ (1− β + βλ) (1− β + βµ)

1− β (1− γ)
(
Bn−1 + (bn − bn−1)2 −Bl

)
;
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this is, in its turn, equivalent to Y ≥ (1−β+βλ)(1−β+βµ)
1−β . Thus, this is precisely the condition un-

der which the society experiments. The right-hand side is increasing in λ and µ. Differentiating

it with respect to β and simplifying yields

d

dβ

(1− β + βλ) (1− β + βµ)

1− β = λµ− (1− λ) (1− µ) (1− β)2 .

Now, if λ + µ > 1, then λµ
(1−λ)(1−µ) > 1, and the derivative is positive for all β. If λ + µ < 1,

then λµ
(1−λ)(1−µ) < 1, and the derivative is decreasing in β, changing its sign exactly once at

β = 1−
√

λµ
(1−λ)(1−µ) . This completes the proof. �

Proof of Proposition 8. If λ > 0 and µ > 0, then (1−β+βλ)(1−β+βµ)
1−β → ∞ as β →

1; consider β to be large enough so that if Bl = Bn−1 − (bn − bn−1)2, the condition Y ≥
(1−β+βλ)(1−β+βµ)

1−β is violated. The condition EBn − (bn − bn−1)2 > Bn−1 implies Y > 1 and,

moreover, that Y is monotonically decreasing in ∆ and that for Bl less than but close to

Bn−1 + (bn − bn−1)2, Y becomes arbitrarily large. Thus, if we denote the value of ∆ under

which Y = (1−β+βλ)(1−β+βµ)
1−β by ∆1, we will have that for ∆ < ∆1, the society experiments.

Now, let ∆2 be the value of ∆ that solves Bl = Bn−1− (bn − bn−1)2; out choice of β ensures

that ∆2 > ∆1. For ∆ ∈ (∆1,∆2), Y < (1−β+βλ)(1−β+βµ)
1−β , and the society does not experiment.

However, for ∆ > ∆2, Bl < Bn−1−(bn − bn−1)2, and group n will move to state n−1 if Bn = Bl.

In this case, the society experiments whenever Y > 1 − β (1− λ); since Y > 1, this condition

holds. Therefore for ∆ > ∆2, the society experiments. This completes the proof. �

B2 Examples

Example B1 (Example with single-peaked preferences and two MVE) There are three

states A,B,C, and two players 1 and 2. The decision-making rule is unanimity in state A and

dictatorship of player 2 in states B and C. Payoffs are given by

A B C
1 2 25 20
2 1 20 25

Then φ1 given by φ1 (A,B,C) = (B,C,C) and φ2 given by φ2 (A,B,C) = (C,C,C) are both

MVE when the discount factor is any β ∈ [0, 1).

Example B2 (Example where the limit state depends on the timing of shocks) There

are two environments, E1 and E2, with the probability of transition π
(
E1, E2

)
= 0.1. There

are two states A,B, and two players 1 and 2. In both environments, the decision-making rule
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is dictatorship of player 1 in state A and dictatorship of player 2 in state B. All transitions are

feasible, and the discound factor is β = 0.9. Payoffs are given by

E1 A B
1 5 20
2 20 30

,
E2 A B
1 30 20
2 20 30

.

Then the mapping φ is given by φE1 (A,B) = (B,B); φE2 (A,B) = (A,B). Suppose that s0 = 1.

Then, if the shock arrives in period t = 1, the limit state is A, and if the shock arrives later, the

limit state is B.

Example B3 (Continuation utilities need not satisfy single-peakedness) There are four

states and three players, player 1 is the dictator in state A, player 2 is the dictator in state B,

and player 3 is the dictator in states C and D. The payoffs are given by the following matrix:

A B C D
1 20 30 90 30
2 5 20 85 90
3 5 25 92 99

.

All payoffs are single-peaked. Suppose β = 0.5; then the unique equilibrium has φ (A) = C,

φ (B) = φ (C) = φ (D) = D. Let us compute the continuation payoffs of player 1. We have:

V1 (A) = 40, V1 (B) = 30, V1 (C) = 50, V1 (D) = 30; the continuation utility of player 1 is thus

not single-peaked.

Example B4 (Importance of E and Ẽ coinciding on some space for comparative

statics) Suppose that in environment E1, there are two players and three states, all transitions

are feasible, and β = 0.99. Player 1 is the dictator in states A and B, and player 2 is the dictator

in state C. The payoffs are given by the matrix:

E A B C
1 80 75 10
2 20 60 15

.

The environment Ẽ has the same feasible transitions, winning coalitions and the discount factor,

but the payoffs are
Ẽ A B C
1 80 85 30
2 20 70 35

.

Let φE and φẼ be the MVE in these environments.

In environment Ẽ, both players have stronger preferences for higher than lower states, as

compared to environment E (the differences in utilities between B and A, C and B are increased
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by 10). However, it is not true that φẼ (x) ≥ φE (x) for any x (and even for x satisfying

φE (x) = x, as in Theorem 6). Indeed, φE (A,B,C) = (A,A,C), and φẼ (A,B,C) = (B,B,B).

Thus, φE (C) = C > B = φẼ (C).

However, the following result is (generically) true: if (1) for any states x < y and any

player i, uẼ,i (y) − uẼ,i (x) ≥ uE,i (y) − uE,i (x); (2) for any state x, MẼ (x) ≥ ME (x) (in the

sense minMẼ (x) ≥ minME (x) and maxMẼ (x) ≥ maxME (x)); and (3) for any states x < y,

y ∈ FE (x) implies y ∈ FẼ (x) and x ∈ FẼ (y) implies x ∈ FE (y), then there exists β0 > 0 such

that for β < β0, φE (x) = x implies φẼ (x) ≥ x.

Example B5 (Example of non-monotone MVE) There are three states A,B,C, and two

players 1 and 2. The decision-making rule is unanimity in all states, and all transitions are

possible. Payoffs are given by
id A B C
1 30 50 40
2 10 40 50

Suppose β is relatively close to 1, e.g., β = 0.9. This case does not satisfy either set of conditions

of Theorem 7. It is straightforward to verify that there is a non-monotone MVE φ (A) = φ (C) =

C, φ (B) = B. (There is also a monotone equilibrium with φ (A) = φ (B) = B, φ (C) = C.)

Example B6 (No MVE with infinite number of shocks) Below is an example with finite

number of states and players and finite number of environments such that all assumptions,

except for the assumption that the number of shocks is finite, are satisfied, but there is no

Markov Voting Equilibrium in pure strategies.

There are three environments E1, E2, E3, three states A = 1, B = 2, C = 3, and three players

1, 2, 3. The history of environments follows a simple Markov chain; in fact, in each period the

environment is drawn separately. More precisely,

π
(
E1
)

: = π
(
E1, E1

)
= π

(
E2, E1

)
= π

(
E3, E1

)
=

1

2
;

π
(
E2
)

: = π
(
E1, E2

)
= π

(
E2, E2

)
= π

(
E3, E2

)
=

2

5
;

π
(
E3
)

: = π
(
E1, E2

)
= π

(
E2, E3

)
= π

(
E3, E3

)
=

1

10
.

The discount factor is 1
2 .

B-15



The following matrices describe stage payoffs, winning coalitions, and feasible transitions.

Environment E1 State A State B State C
Winning coalition Dictatorship of Player 1

Feasible transitions to A,B to B to C
Player 1 60 150 −800
Player 2 30 130 60
Player 3 −100 60 50

Environment E2 State A State B State C
Winning coalition Dictatorship of Player 2

Feasible transitions to A to A,B to C
Player 1 100 80 −800
Player 2 80 70 60
Player 3 −100 60 50

Environment E3 State A State B State C
Winning coalition Dictatorship of Player 3

Feasible transitions to A to B,C to C
Player 1 100 80 −800
Player 2 80 70 60
Player 3 −100 60 50

It is straightforward to see that Sincreasing differences holds; moreover, payoffs are single-peaked,

and in each environment and each state, the set of QMVs is a singleton.

The intuition behind the example is the following. The payoff matrices in environment E2

and E3 coincide, so “essentially”, there are two equally likely environments E1 and “E2 ∪E3”.

Both player 1 and 2 prefer state B when the environment is E2 and state A when the environment

is E1; given the payoff matrix and the discount factor, player 1 would prefer to move from A to

B when in E1, and knowing this, player 2 would be willing to move to A when in E2. However,

there is a chance that the environment becomes E3 rather than E2, in which case a “maniac”

player 3 will become able to move from state B (but not from A!) to state C; the reason for

him to do so is that although he likes state B (in all environments), he strongly dislikes A, and

thus if players 1 and 2 are expected to move between these states, player 3 would rather lock

the society in state C, which is only slighly worse for him than B.

State C, however, is really hated by player 1, who would not risk the slightest chance of

getting there. So, if player 3 is expeced to move to C when given such chance, player 1 would

not move from A to B when the environment is E1, because player 3 is only able to move

to C from B. Now player 2, anticipating that if he decides to move from B to A when the

environment is E2, the society will end up in state A forever; this is something player 2 would
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like to avoid, because state A is very bad for him when the environment is E1. In short, if player

3 is expected to move to C when given this chance, then the logic of the previous paragraph

breaks down, and neither player 1 nor player 2 will be willing to move when they are in power.

But in this case, player 3 is better off staying in state B even when given a chance to move to

C, as he trades off staying in B forever versus staying in C forever. These considerations should

prove that there is no MVE.

More formally, note that there are only eight candidate mappings to consider (some transi-

tions are made infeasible precisely to simplify the argument; alternatively, we could allow any

transitions and make player 1 the dictator in state A when the environment is E3). We consider

these eight mappings separately, and point out the deviation. Obviously, the only values of the

transition mappings to be specified are φE1 (A), φE2 (B), and φE3 (B).

1. φE1 (A) = A, φE2 (B) = A, φE3 (B) = B. Then φ′E3 (B) = C is a profitable deviation.

2. φE1 (A) = B, φE2 (B) = A, φE3 (B) = B. Then φ′E3 (B) = C is a profitable deviation.

3. φE1 (A) = A, φE2 (B) = B, φE3 (B) = B. Then φ′E1 (A) = B is a profitable deviation.

4. φE1 (A) = B, φE2 (B) = B, φE3 (B) = B. Then φ′E2 (B) = A is a profitable deviation.

5. φE1 (A) = A, φE2 (B) = A, φE3 (B) = C. Then φ′E2 (B) = B is a profitable deviation.

6. φE1 (A) = B, φE2 (B) = A, φE3 (B) = C. Then φ′E1 (A) = A is a profitable deviation.

7. φE1 (A) = A, φE2 (B) = B, φE3 (B) = C. Then φ′E3 (B) = B is a profitable deviation.

8. φE1 (A) = B, φE2 (B) = B, φE3 (B) = C. Then φ′E3 (B) = B is a profitable deviation.

This proves that there is no MVE in pure strategies (i.e., in the sense of Definition 3).
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